ShenYu网关源码阅读(七)限流插件初探

1,893 阅读6分钟

简介

    前面的文章中对处理流程探索的差不多了,今天来探索下限流插件:resilience4j

示例运行

环境配置

    启动下MySQL和redis

docker run -dit --name redis -p 6379:6379 redis
docker run --name mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD=123456 -d mysql:latest

Soul-Admin启动及相关配置

    运行Soul-admin,进入管理界面:系统管理 --> 插件管理 --> resilience4j ,点击编辑,把它开启

    进入管理界面的插件列表:resilience4j 添加选择器和规则,这里安装divide插件的匹配方式配的,让divide的/http前缀的接口都走限流(因为使用测试时官方本身自带的HTTP测试)

    规则配置中:token filling number 要设置大于0,不然会报错

    circuit enable 要设置为0,判断的时候走限流的逻辑

    其他的:fallback uri 随便填个路径,其他的参数都可填1

Soul-Bootstrap配置启动

    在Soul-Bootstrap中进入相关的依赖,大致如下:

<!-- soul resilience4j plugin start-->
  <dependency>
      <groupId>org.dromara</groupId>
      <artifactId>soul-spring-boot-starter-plugin-resilience4j</artifactId>
       <version>${last.version}</version>
  </dependency>
  <!-- soul resilience4j plugin end-->

    启动Soul-Bootstrap

HTTP示例启动

    启动:soul-examples --> soul-examples-http --> SoulTestHttpApplication

    进入管理界面的:插件列表 --> divide 能看到相关的注册接口信息

    访问: http://127.0.0.1:9195/http/order/findById?id=1111

    成功运行,下面开始源码debug

{
    "id": "1111",
    "name": "hello world findById"
}

源码Debug

限流流程顺序跟踪确认

    根据前面的文章,对处理流程基本上有个清晰的认识了,我们通过前面的调试,知道 RateLimiterPlugin 是继承 AbstractSoulPlugin ,那它就会走和路由匹配相关的逻辑,如下面对代码所示。匹配成功后才走 doExcute 限流逻辑

    # AbstractSoulPlugin
    // 首先进行路由匹配
    public Mono<Void> execute(final ServerWebExchange exchange, final SoulPluginChain chain) {
        String pluginName = named();
        final PluginData pluginData = BaseDataCache.getInstance().obtainPluginData(pluginName);
        if (pluginData != null && pluginData.getEnabled()) {
            final Collection<SelectorData> selectors = BaseDataCache.getInstance().obtainSelectorData(pluginName);
            if (CollectionUtils.isEmpty(selectors)) {
                return CheckUtils.checkSelector(pluginName, exchange, chain);
            }
            final SelectorData selectorData = matchSelector(exchange, selectors);
            if (Objects.isNull(selectorData)) {
                if (PluginEnum.WAF.getName().equals(pluginName)) {
                    return doExecute(exchange, chain, null, null);
                }
                return CheckUtils.checkSelector(pluginName, exchange, chain);
            }
            if (selectorData.getLoged()) {
                log.info("{} selector success match , selector name :{}", pluginName, selectorData.getName());
            }
            final List<RuleData> rules = BaseDataCache.getInstance().obtainRuleData(selectorData.getId());
            if (CollectionUtils.isEmpty(rules)) {
                if (PluginEnum.WAF.getName().equals(pluginName)) {
                    return doExecute(exchange, chain, null, null);
                }
                return CheckUtils.checkRule(pluginName, exchange, chain);
            }
            RuleData rule;
            if (selectorData.getType() == SelectorTypeEnum.FULL_FLOW.getCode()) {
                //get last
                rule = rules.get(rules.size() - 1);
            } else {
                rule = matchRule(exchange, rules);
            }
            if (Objects.isNull(rule)) {
                return CheckUtils.checkRule(pluginName, exchange, chain);
            }
            if (rule.getLoged()) {
                log.info("{} rule success match ,rule name :{}", pluginName, rule.getName());
            }
            return doExecute(exchange, chain, selectorData, rule);
        }
        return chain.execute(exchange);
    }

    # RateLimiterPlugin
    // 匹配完成后走限流的逻辑
    protected Mono<Void> doExecute(final ServerWebExchange exchange, final SoulPluginChain chain, final SelectorData selector, final RuleData rule) {
        final SoulContext soulContext = exchange.getAttribute(Constants.CONTEXT);
        assert soulContext != null;
        // 这里更加字符串转成对象,所有规则哪里不能乱填
        Resilience4JHandle resilience4JHandle = GsonUtils.getGson().fromJson(rule.getHandle(), Resilience4JHandle.class);
        // 这里判断 Circle enable 是否为1 走 combined的逻辑,但我们这次想走 limit 的逻辑,所以要填0
        if (resilience4JHandle.getCircuitEnable() == 1) {
            return combined(exchange, chain, rule);
        }
        return rateLimiter(exchange, chain, rule);
    }

    // 到这有些复杂,看的不是太懂,只能继续跟下去
    private Mono<Void> rateLimiter(final ServerWebExchange exchange, final SoulPluginChain chain, final RuleData rule) {
        return ratelimiterExecutor.run(
                chain.execute(exchange), fallback(ratelimiterExecutor, exchange, null), Resilience4JBuilder.build(rule))
                .onErrorResume(throwable -> ratelimiterExecutor.withoutFallback(exchange, throwable));
    }

    plugin前面代码还是看的懂,但rateLimiter开始就有些迷糊,流式编程的知识用上都看不懂了,但大致知道是进行限流逻辑

public class RateLimiterExecutor implements Executor {

    @Override
    public <T> Mono<T> run(final Mono<T> toRun, final Function<Throwable, Mono<T>> fallback, final Resilience4JConf conf) {
        // 生成限流器
        RateLimiter rateLimiter = Resilience4JRegistryFactory.rateLimiter(conf.getId(), conf.getRateLimiterConfig());
        // 应该是在这触发的限流逻辑
        Mono<T> to = toRun.transformDeferred(RateLimiterOperator.of(rateLimiter));
        if (fallback != null) {
            return to.onErrorResume(fallback);
        }
        return to;
    }
}

    继续跟到上面那个类,我们看到了明显的生成限流器的逻辑,但有个让疑惑的是,因为返回的Mono,但没有看到明显的限流触发逻辑。在没有响应式编程的基础的时候感觉很懵,目前也没去定位真正的触发代码是在哪?但猜测是在上面注释中标注的那段触发的

    因为响应式,没有办法跟下去了,我们只能另找路径,看看具体的限流逻辑是什么样的

    通过上面知道:RateLimiter 是限流器,我们查看它的具体实现

    发现是一个接口,我们看看它有哪些实现,发现有两个: SemaphoreBasedRateLimiter 和 AtomicRateLimiter

    因为不知道用的哪个,我们在这两个类中可能会执行的函数都给打上断点

    重启发送请求,不断的跳断点,终于进入了一个限流器的类: AtomicRateLimiter ,大致如下

    # AtomicRateLimiter
    public long reservePermission(final int permits) {
        long timeoutInNanos = ((AtomicRateLimiter.State)this.state.get()).config.getTimeoutDuration().toNanos();
        AtomicRateLimiter.State modifiedState = this.updateStateWithBackOff(permits, timeoutInNanos);
        boolean canAcquireImmediately = modifiedState.nanosToWait <= 0L;
        if (canAcquireImmediately) {
            this.publishRateLimiterEvent(true, permits);
            return 0L;
        } else {
            boolean canAcquireInTime = timeoutInNanos >= modifiedState.nanosToWait;
            if (canAcquireInTime) {
                this.publishRateLimiterEvent(true, permits);
                return modifiedState.nanosToWait;
            } else {
                this.publishRateLimiterEvent(false, permits);
                return -1L;
            }
        }
    }

    具体实现逻辑,不是我们此次关注的目的,此次是想看它在plugin中处理的流程顺序如何

    和前面几篇一样,我们在: SoulWebHandler 打上断点,看看限流器的执行顺序是什么样的

    通过debug,我们发现顺序和我们预期的基本一致:在进入 RateLimiterPlugin 插件执行的时候,执行的断点也到了限流器(AtomicRateLimiter),等限流器逻辑执行完毕,divide等插件才开始执行

关于执行处罚和Mono的一些思考

    我们看一下下面限流执行的代码:

public class RateLimiterExecutor implements Executor {

    @Override
    public <T> Mono<T> run(final Mono<T> toRun, final Function<Throwable, Mono<T>> fallback, final Resilience4JConf conf) {
        // 生成限流器
        RateLimiter rateLimiter = Resilience4JRegistryFactory.rateLimiter(conf.getId(), conf.getRateLimiterConfig());
        // 应该是在这触发的限流逻辑
        Mono<T> to = toRun.transformDeferred(RateLimiterOperator.of(rateLimiter));
        if (fallback != null) {
            return to.onErrorResume(fallback);
        }
        return to;
    }
}

    返回的一个Mono

    我们再看看divide之类的,也是返回的Mono

public class DividePlugin extends AbstractSoulPlugin {

    @Override
    protected Mono<Void> doExecute(final ServerWebExchange exchange, final SoulPluginChain chain, final SelectorData selector, final RuleData rule) {
        final SoulContext soulContext = exchange.getAttribute(Constants.CONTEXT);
        assert soulContext != null;
        final DivideRuleHandle ruleHandle = GsonUtils.getInstance().fromJson(rule.getHandle(), DivideRuleHandle.class);
        final List<DivideUpstream> upstreamList = UpstreamCacheManager.getInstance().findUpstreamListBySelectorId(selector.getId());
        if (CollectionUtils.isEmpty(upstreamList)) {
            log.error("divide upstream configuration error: {}", rule.toString());
            Object error = SoulResultWrap.error(SoulResultEnum.CANNOT_FIND_URL.getCode(), SoulResultEnum.CANNOT_FIND_URL.getMsg(), null);
            return WebFluxResultUtils.result(exchange, error);
        }
        final String ip = Objects.requireNonNull(exchange.getRequest().getRemoteAddress()).getAddress().getHostAddress();
        DivideUpstream divideUpstream = LoadBalanceUtils.selector(upstreamList, ruleHandle.getLoadBalance(), ip);
        if (Objects.isNull(divideUpstream)) {
            log.error("divide has no upstream");
            Object error = SoulResultWrap.error(SoulResultEnum.CANNOT_FIND_URL.getCode(), SoulResultEnum.CANNOT_FIND_URL.getMsg(), null);
            return WebFluxResultUtils.result(exchange, error);
        }
        // set the http url
        String domain = buildDomain(divideUpstream);
        String realURL = buildRealURL(domain, soulContext, exchange);
        exchange.getAttributes().put(Constants.HTTP_URL, realURL);
        // set the http timeout
        exchange.getAttributes().put(Constants.HTTP_TIME_OUT, ruleHandle.getTimeout());
        exchange.getAttributes().put(Constants.HTTP_RETRY, ruleHandle.getRetry());
        return chain.execute(exchange);
    }
}

    再看看我们非常熟悉: SoulWebHandler

        public Mono<Void> execute(final ServerWebExchange exchange) {
            return Mono.defer(() -> {
                if (this.index < plugins.size()) {
                    SoulPlugin plugin = plugins.get(this.index++);
                    Boolean skip = plugin.skip(exchange);
                    if (skip) {
                        return this.execute(exchange);
                    }
                    return plugin.execute(exchange, this);
                }
                return Mono.empty();
            });
        }

    在上面函数中,通过英文,可以看到所有的Plugin都是返回一个Mono

    我们结合响应式编程的相关概念:发布订阅。也就是说,这些plugin Mono 会发布到一个队列中,当订阅的时候,就会取出来顺序执行

    订阅的逻辑大致在那呢,我们翻一翻我们第三篇分析:Soul 网关源码阅读(三)请求处理概览

    在类:HttpServerHandle ,找到很可疑的一段,猜测应该是这:

    public void onStateChange(Connection connection, State newState) {
        if (newState == HttpServerState.REQUEST_RECEIVED) {
            try {
                if (log.isDebugEnabled()) {
                    log.debug(ReactorNetty.format(connection.channel(), "Handler is being applied: {}"), new Object[]{this.handler});
                }

                HttpServerOperations ops = (HttpServerOperations)connection;
                // 在这进行了发布和订阅,而handler.apply(ops, ops)会不断调用后面哪些plugin的逻辑
                Mono.fromDirect((Publisher)this.handler.apply(ops, ops)).subscribe(ops.disposeSubscriber());
            } catch (Throwable var4) {
                log.error(ReactorNetty.format(connection.channel(), ""), var4);
                connection.channel().close();
            }
        }

    }

    而限流的Mono是在divide之前,所以限流就先执行了,大致示意图如下:

在这里插入图片描述

    大意是:fromDirect 函数触发将 Plugin Mono 放到队列中;subscribe函数,触发执行,执行顺序先进先出,则GlobalPlugin先进去的,则先开始执行(图中Global先进的,把上方看做队列底部,理解意思就行)。那顺序就对应上了我们的调试猜想

    还没深入研究响应式编程,所以也有可能是错的

疑问点

    在下面这段生成限流器的逻辑中,好像每次请求过来都是进行一个新的生成,有没有可能进行复用,配置里面加一个字段,表示是否更新过,没有更新,我们就复用我们之前的限流器;有更新我们就新生成一个

    当然上面优化,需要在具体了解动态配置更新后,再看看是否可行

    也有可能是不熟悉Resilience4J,可能下面的代码中Resilience4JRegistryFactory本身实现了缓存复用

public class RateLimiterExecutor implements Executor {

    @Override
    public <T> Mono<T> run(final Mono<T> toRun, final Function<Throwable, Mono<T>> fallback, final Resilience4JConf conf) {
        // 生成限流器
        RateLimiter rateLimiter = Resilience4JRegistryFactory.rateLimiter(conf.getId(), conf.getRateLimiterConfig());
        // 应该是在这触发的限流逻辑
        Mono<T> to = toRun.transformDeferred(RateLimiterOperator.of(rateLimiter));
        if (fallback != null) {
            return to.onErrorResume(fallback);
        }
        return to;
    }
}

总结

    本次文章大致探索了限流插件:resilience4j的使用配置。调试验证它的限流逻辑执行在plugin链中执行顺序,发现基本符合我们的猜想,限流逻辑的执行和plugin顺序一致

    还初步讨论提出了plugin链在Mono队列中的执行猜想,后面研究响应式编程的时候验证一下猜想是否正常

    最后提出了一些对限流器生成的一些优化疑问,看后面配置更新相关的分析的时候,是否能验证自己的猜想

参考链接

Soul网关源码分析文章列表

Github

掘金