一、概述
消息队列已经逐渐成为企业IT系统内部通信的核心手段。它具有低耦合、可靠投递、广播、流量控制、最终一致性等一系列功能,成为异步RPC的主要手段之一。当今市面上有很多主流的消息中间件,如老牌的ActiveMQ、RabbitMQ,炙手可热的Kafka,阿里巴巴自主开发RocketMQ等。
二、消息中间件的组成
- Broker: 消息服务器,提供消息核心服务。
- Producer: 消息生产者,业务的发起方,负责生产消息并传输给Broker。
- Consumer: 消息消费者,业务的处理方式,负责从Broker获取消息并进行相应的业务处理。
- Queue: 队列,P2P模式,生产者像特定Queue发送消息,消费者订阅特定的Queue完成指定消息的接收。
- Topic: 主题,发布订阅模式,不同的生产者向Topic发送消息,由MQ服务器分发给所有订阅者,实现消息的广播。
- Message: 消息体,根据不同通信协议定义固定格式进行编码的数据包,来封装业务数据。
三、消息中间件模式
- P2P:点对点,使用Queue作为虚拟通道来传递消息。
- Pub/Sub:发布订阅,使用Topic作为虚拟通道来传递消息。
- 关于这两种消息模型的区别请阅读先前JMS详解这篇
四、消息中间件优势
- 系统解耦: 交互系统之间没有直接的调用关系,只是通过消息传输,故系统侵入性不强,耦合度低。
- 异步通信: 例如原来的一套逻辑,完成支付可能涉及先修改订单状态、计算会员积分、通知物流配送几个逻辑才能完成;通过MQ架构设计,就可将紧急重要(需要立刻响应)的业务放到该调用方法中,响应要求不高的使用消息队列,放到MQ队列中,供消费者处理。
- 流量削峰: 服务器的处理资源是恒定的,用或者不用它的处理能力都是一样的,所以出现峰值的话,很容易导致忙到处理不过来,这时候MQ相当于一个缓存可以让服务端处理变得平稳,保障服务的高可用。
五、应用场景
- 异步通信: 有些业务不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。
- 解耦: 降低工程间的强依赖程度,针对异构系统进行适配。在项目启动之初来预测将来项目会碰到什么需求,是极其困难的。通过消息系统在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口,当应用发生变化时,可以独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
- 冗余: 有些情况下,处理数据的过程会失败。除非数据被持久化,否则将造成丢失。消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的”插入-获取-删除”范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。
- 扩展性: 因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。不需要改变代码、不需要调节参数。便于分布式扩容。
- 过载保护: 在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量无法提取预知;如果以为了能处理这类瞬间峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。
- 可恢复性: 系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。
- 顺序保证: 在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。
- 缓冲: 在任何重要的系统中,都会有需要不同的处理时间的元素。消息队列通过一个缓冲层来帮助任务最高效率的执行,该缓冲有助于控制和优化数据流经过系统的速度。以调节系统响应时间。
- 数据流处理: 分布式系统产生的海量数据流,如:业务日志、监控数据、用户行为等,针对这些数据流进行实时或批量采集汇总,然后进行大数据分析是当前互联网的必备技术,通过消息队列完成此类数据收集是最好的选择。
六、常用协议
-
AMQP协议: AMQP即Advanced Message Queuing Protocol,一个提供统一消息服务的应用层标准高级消息队列协议,是应用层协议的一个开放标准,为面向消息的中间件设计。基于此协议的客户端与消息中间件可传递消息,并不受客户端/中间件不同产品,不同开发语言等条件的限制。
优点:可靠、通用。
-
MQTT协议: MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议,有可能成为物联网的重要组成部分。该协议支持所有平台,几乎可以把所有联网物品和外部连接起来,被用来当做传感器和致动器(比如通过Twitter让房屋联网)的通信协议。
优点:格式简洁、占用带宽小、移动端通信、PUSH、嵌入式系统。
-
STOMP协议: STOMP(Streaming Text Orientated Message Protocol)是流文本定向消息协议,是一种为MOM(Message Oriented Middleware,面向消息的中间件)设计的简单文本协议。STOMP提供一个可互操作的连接格式,允许客户端与任意STOMP消息代理(Broker)进行交互。
优点:简单,易用。
-
XMPP协议: XMPP(可扩展消息处理现场协议,Extensible Messaging and Presence Protocol)是基于可扩展标记语言(XML)的协议,多用于即时消息(IM)以及在线现场探测。适用于服务器之间的准即时操作。核心是基于XML流传输,这个协议可能最终允许因特网用户向因特网上的其他任何人发送即时消息,即使其操作系统和浏览器不同。
优点:通用公开、兼容性强、可扩展、安全性高,但XML编码格式占用带宽大。
-
其他基于TCP/IP自定义的协议: 有些特殊框架(如:redis、kafka、zeroMq等)根据自身需要未严格遵循MQ规范,而是基于TCP\IP自行封装了一套协议,通过网络socket接口进行传输,实现了MQ的功能。
七、常见的消息中间件
常见的消息中间件:RocketMQ、RabbitMQ、ActiveMQ、Redis、Kafka、ZeroMQ。
| 特性 | ActiveMQ | RabbitMQ | RocketMQ | kafka |
|---|---|---|---|---|
| 单机吞吐量 | 万级,吞吐量比RocketMQ和Kafka要低了一个数量级 | 万级,吞吐量比RocketMQ和Kafka要低了一个数量级 | 10万级,RocketMQ也是可以支撑高吞吐的一种MQ | 10万级别,这是kafka最大的优点,就是吞吐量高。一般配合大数据类的系统来进行实时数据计算、日志采集等场景 |
| topic数量对吞吐量的影响 | topic可以达到几百,几千个的级别,吞吐量会有较小幅度的下降这是RocketMQ的一大优势,在同等机器下,可以支撑大量的topic | topic从几十个到几百个的时候,吞吐量会大幅度下降所以在同等机器下,kafka尽量保证topic数量不要过多。如果要支撑大规模topic,需要增加更多的机器资源 | ||
| 时效性 | ms级 | 微秒级,这是rabbitmq的一大特点,延迟是最低的 | ms级 | 延迟在ms级以内 |
| 可用性 | 高,基于主从架构实现高可用性 | 高,基于主从架构实现高可用性 | 非常高,分布式架构 | 非常高,kafka是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用 |
| 消息可靠性 | 有较低的概率丢失数据 | 经过参数优化配置,可以做到0丢失 | 经过参数优化配置,消息可以做到0丢失 | |
| 功能支持 | MQ领域的功能极其完备 | 基于erlang开发,所以并发能力很强,性能极其好,延时很低 | MQ功能较为完善,还是分布式的,扩展性好 | 功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用,是事实上的标准 |
| 优劣势总结 | 非常成熟,功能强大,在业内大量的公司以及项目中都有应用偶尔会有较低概率丢失消息而且现在社区以及国内应用都越来越少,官方社区现在对ActiveMQ 5.x维护越来越少几个月才发布一个版本而且确实主要是基于解耦和异步来用的,较少在大规模吞吐的场景中使用 | erlang语言开发,性能极其好,延时很低;吞吐量到万级,MQ功能比较完备而且开源提供的管理界面非常棒,用起来很好用社区相对比较活跃,几乎每个月都发布几个版本分在国内一些互联网公司近几年用rabbitmq也比较多一些但是问题也是显而易见的,RabbitMQ确实吞吐量会低一些,这是因为他做的实现机制比较重。而且erlang开发,国内有几个公司有实力做erlang源码级别的研究和定制?如果说你没这个实力的话,确实偶尔会有一些问题,你很难去看懂源码,你公司对这个东西的掌控很弱,基本职能依赖于开源社区的快速维护和修复bug。而且rabbitmq集群动态扩展会很麻烦,不过这个我觉得还好。其实主要是erlang语言本身带来的问题。很难读源码,很难定制和掌控。 | 接口简单易用,而且毕竟在阿里大规模应用过,有阿里品牌保障日处理消息上百亿之多,可以做到大规模吞吐,性能也非常好,分布式扩展也很方便,社区维护还可以,可靠性和可用性都是ok的,还可以支撑大规模的topic数量,支持复杂MQ业务场景而且一个很大的优势在于,阿里出品都是java系的,我们可以自己阅读源码,定制自己公司的MQ,可以掌控社区活跃度相对较为一般,不过也还可以,文档相对来说简单一些,然后接口这块不是按照标准JMS规范走的有些系统要迁移需要修改大量代码还有就是阿里出台的技术,你得做好这个技术万一被抛弃,社区黄掉的风险,那如果你们公司有技术实力我觉得用RocketMQ挺好的 | kafka的特点其实很明显,就是仅仅提供较少的核心功能,但是提供超高的吞吐量,ms级的延迟,极高的可用性以及可靠性,而且分布式可以任意扩展同时kafka最好是支撑较少的topic数量即可,保证其超高吞吐量而且kafka唯一的一点劣势是有可能消息重复消费,那么对数据准确性会造成极其轻微的影响,在大数据领域中以及日志采集中,这点轻微影响可以忽略这个特性天然适合大数据实时计算以及日志收集 |
博主新开通了微信公众号:欢迎关注‘秃顶记’,聪明绝顶走到黑。