随机森林 – Random forest

618 阅读7分钟

随机森林是一种由决策树构成的集成算法。它属于Bagging类型,通过组合多个弱分类器,最终结果通过投票或取均值,使得整体模型的结果具有较高的精确度和泛化性能。其可以取得不错成绩,主要归功于“随机”和“森林”,一个使它具有抗过拟合能力,一个使它更加精准。

  • Booststraping:有放回采样
  • 随机森林的双重随机性:
    • 样本随机性:对于我们的Bagging算法,一般会对样本使用boostrap进行随机采集,每棵树采集相同的样本数量,一般小于原始样本量。这样得到的采样集每次的内容都不同,通过这样的自助法生成k个分类树组成随机森林,做到样本随机性。(指定一个随机比例,比如0.6,为什么不用全部样本呢?如果存在异常点,每次都用全部样本的话,异常点每次都会考虑进去,异常点会给模型准确性带来不利影响,所以要使某些树选不到异常点)
    • 特征随机性:在生成每棵树的时候,每个树选取的特征都仅仅是随机选出的少数特征,一般默认取特征总数m的开方。而一般的CART树则是会选取全部的特征进行建模。(建模之前并不知道哪个特征效果好,哪个不好)

1. 什么是随机森林?

随机森林属于 集成学习 中的 Bagging(Bootstrap AGgregation 的简称) 方法。如果用图来表示他们之间的关系如下:

随机森林是由很多决策树构成的,不同决策树之间没有关联。

当我们进行分类任务时,新的输入样本进入,就让森林中的每一棵决策树分别进行判断和分类,每个决策树会得到一个自己的分类结果,决策树的分类结果中哪一个分类最多,那么随机森林就会把这个结果当做最终的结果。

集成学习 

集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。

Bagging Bagging也叫自举汇聚法(bootstrap aggregating),是一种在原始数据集上通过有放回抽样重新选出k个新数据集来训练分类器的集成技术。它使用训练出来的分类器的集合来对新样本进行分类,然后用多数投票或者对输出求均值的方法统计所有分类器的分类结果,结果最高的类别即为最终标签。此类算法可以有效降低bias,并能够降低variance。

2. 构造随机森林的 4 个步骤

  1. 假如有 N 个样本,则有放回的随机选择 N 个样本(每次随机选择一个样本,然后返回继续选择)。这选择好了的N个样本用来训练一个决策树,作为决策树根节点处的样本。

    从这里我们可以知道:每棵树的训练集都是不同的,而且里面包含重复的训练样本(理解这点很重要)。

    为什么要随机抽样训练集?
    如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的,这样的话完全没有bagging的必要;

    为什么要有放回地抽样?
    我理解的是这样的:如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是"有偏的",都是绝对"片面的"(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决,这种表决应该是"求同",因此使用完全不同的训练集来训练每棵树这样对最终分类结果是没有帮助的,这样无异于是"盲人摸象"。

  2. 当每个样本有 M 个属性时,在决策树的每个节点需要分裂时,随机从这 M 个属性中选取出 m 个属性,满足条件 m << M。然后从这 m 个属性中采用某种策略(比如说信息增益)来选择1个属性作为该节点的分裂属性。

  3. 决策树形成过程中每个节点都要按照步骤2来分裂(很容易理解,如果下一次该节点选出来的那一个属性是刚刚其父节点分裂时用过的属性,则该节点已经达到了叶子节点,无须继续分裂了)。一直到不能够再分裂为止。注意整个决策树形成过程中没有进行剪枝。

    随机森林分类效果(错误率)与两个因素有关:

    • 森林中任意两棵树的相关性:相关性越大,错误率越大;
    • 森林中每棵树的分类能力:每棵树的分类能力越强,整个森林的错误率越低。 减小特征选择个数m,树的相关性和分类能力也会相应的降低;增大m,两者也会随之增大。所以关键问题是如何选择最优的m(或者是范围),这也是随机森林唯一的一个参数。
  4. 按照步骤1~3建立大量的决策树,这样就构成了随机森林了。

3. 袋外错误率(oob error)

上面提到,构建随机森林的关键问题就是如何选择最优的m,要解决这个问题主要依据计算袋外错误率oob error(out-of-bag error)。

随机森林有一个重要的优点就是,没有必要对它进行交叉验证或者用一个独立的测试集来获得误差的一个无偏估计。它可以在内部进行评估,也就是说在生成的过程中就可以对误差建立一个无偏估计。

我们知道,在构建每棵树时,我们对训练集使用了不同的bootstrap sample(随机且有放回地抽取)。所以对于每棵树而言(假设对于第k棵树),大约有1/3的训练实例没有参与第k棵树的生成,对于这部分没采集到的数据,我们常常称之为袋外数据(Out Of Bag,简称OOB)。这些数据没有参与训练集模型的拟合,因此可以用来检测模型的泛化能力。

而这样的采样特点就允许我们进行oob估计,它的计算方式如下: (note:以样本为单位)

1)对每个样本,计算它作为oob样本的树对它的分类情况(约1/3的树);
2)然后以简单多数投票作为该样本的分类结果;
3)最后用误分个数占样本总数的比率作为随机森林的oob误分率。

oob误分率是随机森林泛化误差的一个无偏估计,它的结果近似于需要大量计算的k折交叉验证。

4. 随机森林的优缺点

4.1 优点

  1. 它可以出来很高维度(特征很多)的数据,并且不用降维,无需做特征选择
  2. 它可以判断特征的重要程度
  3. 可以判断出不同特征之间的相互影响
  4. 不容易过拟合
  5. 训练速度比较快,容易做成并行方法
  6. 实现起来比较简单
  7. 对于不平衡的数据集来说,它可以平衡误差
  8. 如果有很大一部分的特征遗失,仍可以维持准确度

4.2 缺点

  1. 随机森林已经被证明在某些噪音较大的分类或回归问题上会过拟合
  2. 对于有不同取值的属性的数据,取值划分较多的属性会对随机森林产生更大的影响,所以随机森林在这种数据上产出的属性权值是不可信的

5. 随机森林的 4 个应用方向

随机森林可以在很多地方使用:

  1. 对离散值的分类
  2. 对连续值的回归
  3. 无监督学习聚类
  4. 异常点检测

参考:
easyai.tech/ai-definiti…
blog.csdn.net/qq_34106574…
www.jianshu.com/p/a779f0686…