U-net:Convolutional networks for biomedical image segmentation

220 阅读1分钟

参考论文:《U-net: Convolutional networks for biomedical image segmentation》 lmb.informatik.uni-freiburg.de/people/ronn…


在这里插入图片描述 | max pooling | stride=2 | | others | stride=1 (unpaddied) |

  • based on Fully Convolutional Network
  • contracting path; expansive path;
  • The desired output include localization
  • The upsampling part we have also a large number of feature channels -> higher resolution
  • CHALLENGE: The separation of touching objects of the same class.
  • upsample and downsample
    • At each downsampling setp we double the number of feature channels
    • At each upsampling step we halves the number of feature channels
  • each 3x3 convolution followed by a ReLU
  • SGD
  • high momentum: 0.99;

最后输出,有K个channel,每个Channel代表一个类别。

对于ground truth,相同类别存在相连的情况:

(在处理同类别连接边界问题和groud truth权重计算方面,有些不理解)