Java 源码 - java.util.concurrent.CopyOnWriteArrayList (Part 1)

823 阅读6分钟

简介

CopyOnWriteArrayList是Java并发包中提供的一个并发容器,它是个线程安全且读操作无锁的ArrayList,写操作则通过创建底层数组的新副本来实现,是一种读写分离的并发策略,我们也可以称这种容器为"写时复制器",Java并发包中类似的容器还有CopyOnWriteSet。本文会对CopyOnWriteArrayList的实现原理及源码进行分析。

实现原理

我们都知道,集合框架中的ArrayList是非线程安全的,Vector虽是线程安全的,但由于简单粗暴的锁同步机制,性能较差。而CopyOnWriteArrayList则提供了另一种不同的并发处理策略(当然是针对特定的并发场景)。

很多时候,我们的系统应对的都是读多写少的并发场景。CopyOnWriteArrayList容器允许并发读,读操作是无锁的,性能较高。至于写操作,比如向容器中添加一个元素,则首先将当前容器复制一份,然后在新副本上执行写操作,结束之后再将原容器的引用指向新容器。

优缺点分析

了解了CopyOnWriteArrayList的实现原理,分析它的优缺点及使用场景就很容易了。

优点:

读操作性能很高,因为无需任何同步措施,比较适用于读多写少的并发场景。Java的list在遍历时,若中途有别的线程对list容器进行修改,则会抛出ConcurrentModificationException异常。而CopyOnWriteArrayList由于其"读写分离"的思想,遍历和修改操作分别作用在不同的list容器,所以在使用迭代器进行遍历时候,也就不会抛出ConcurrentModificationException异常了

缺点:

缺点也很明显,一是内存占用问题,毕竟每次执行写操作都要将原容器拷贝一份,数据量大时,对内存压力较大,可能会引起频繁GC;二是无法保证实时性,Vector对于读写操作均加锁同步,可以保证读和写的强一致性。而CopyOnWriteArrayList由于其实现策略的原因,写和读分别作用在新老不同容器上,在写操作执行过程中,读不会阻塞但读取到的却是老容器的数据。

继承体系

通过类图,可以看到CopyOnWriteArrayList的继承体系·:

  • 实现了List, RandomAccess, Cloneable, java.io.Serializable等接口。

  • 实现了List,提供了基础的添加、删除、遍历等操作。

  • 实现了RandomAccess,提供了随机访问的能力。

  • 实现了Cloneable,可以被克隆。

  • 实现了Serializable,可以被序列化。

源码分析

属性

    //可重入锁,保证线程安全
    final transient ReentrantLock lock = new ReentrantLock();

    //存放数据元素的数组,只能通过get/set方法访问
    private transient volatile Object[] array;

    final Object[] getArray() {
        return array;
    }

    final void setArray(Object[] a) {
        array = a;
    }
  • lock:用于修改时加锁,使用transient修饰表示不自动序列化。
  • array:被使用volatile修饰表示一个线程对这个字段的修改另外一个线程立即可见。

构造方法

  • 无参构造方法:创建一个空数组

    public CopyOnWriteArrayList() { setArray(new Object[0]); }

  • 有参构造方法,参数为集合
    public CopyOnWriteArrayList(Collection<? extends E> c) {
        Object[] elements;
         // 如果c也是CopyOnWriteArrayList类型
        // 那么直接把它的数组拿过来使用
        if (c.getClass() == CopyOnWriteArrayList.class)
            elements = ((CopyOnWriteArrayList<?>)c).getArray();
        else {
           //否则,先转换为数组
            elements = c.toArray();
            // c.toArray might (incorrectly) not return Object[] (see 6260652)
           //  检查c.toArray()返回的是不是Object[]类型,如果不是,重新拷贝成Object[].class类型
            if (elements.getClass() != Object[].class)
                elements = Arrays.copyOf(elements, elements.length, Object[].class);
        }
        setArray(elements);
    }
    
  • 有参构造方法,参数为数组
    //把toCopyIn的元素拷贝给当前list的数组。
    public CopyOnWriteArrayList(E[] toCopyIn) {
        setArray(Arrays.copyOf(toCopyIn, toCopyIn.length, Object[].class));
    }
    

add(E e)

添加一个元素到末尾

    public boolean add(E e) {
        //获取锁
        final ReentrantLock lock = this.lock;
        //加锁
        lock.lock();
        try {
           //旧数组
            Object[] elements = getArray();
            //获取旧数组长度
            int len = elements.length;
            //拷贝旧数组的值到新数组
            Object[] newElements = Arrays.copyOf(elements, len + 1);
            //将插入的元素放到最后
            newElements[len] = e;
            //存放元素数组置为新数组 
            setArray(newElements);
            return true;
        } finally {
            //释放锁
            lock.unlock();
        }
    }

add(int index, E element)

在指定位置插入数组

 public void add(int index, E element) {
        //获取锁
        final ReentrantLock lock = this.lock;
        //加锁
        lock.lock();
        try {
           //旧数组
            Object[] elements = getArray();
            int len = elements.length;
            //判断下标是否越界
            if (index > len || index < 0)
                throw new IndexOutOfBoundsException("Index: "+index+
                                                    ", Size: "+len);
            //新数组                                        
            Object[] newElements;
            int numMoved = len - index;
            if (numMoved == 0)
            // 如果插入的位置是最后一位
            // 那么拷贝一个n+1的数组, 其前n个元素与旧数组一致
                newElements = Arrays.copyOf(elements, len + 1);
            else {
                // 如果插入的位置不是最后一位
               // 那么新建一个n+1的数组
                newElements = new Object[len + 1];
                //拷贝旧数组[0,……index-1]下标的元素
                System.arraycopy(elements, 0, newElements, 0, index);
                //拷贝旧数组的其余元素到新数组[index+1,……length+1],刚好空出了index下标位置
                System.arraycopy(elements, index, newElements, index + 1,
                                 numMoved);
            }
            //将插入的元素放到index下标位置
            newElements[index] = element;
            //给array赋值
            setArray(newElements);
        } finally {
           //释放锁
            lock.unlock();
        }
    }

写入操作:

  • 在上面添加元素的操作中,都进行了加锁的操作
  • 拷贝一个新数组,长度等于原数组长度加1,并把原数组元素拷贝到新数组中
  • 把新数组赋值给当前对象的array属性,覆盖原数组

remove(int index)

根据下标位置移除数据元素:

    public E remove(int index) {
        //获取锁
        final ReentrantLock lock = this.lock;
        //加锁 
        lock.lock();
        try {
           //旧数组
            Object[] elements = getArray();
            int len = elements.length;
            E oldValue = get(elements, index);
            int numMoved = len - index - 1;
            if (numMoved == 0)
            // 如果移除的是最后一位
            // 那么直接拷贝一份n-1的新数组, 最后一位就自动删除了
                setArray(Arrays.copyOf(elements, len - 1));
            else {
              // 如果移除的不是最后一位
             // 那么新建一个n-1的新数组
                Object[] newElements = new Object[len - 1];
                // 将前index个元素拷贝到新数组中
                System.arraycopy(elements, 0, newElements, 0, index);
                // 将index后面(不包含)的元素往前挪一位
               // 这样正好把index位置覆盖掉了, 相当于删除了
                System.arraycopy(elements, index + 1, newElements, index,
                                 numMoved);
                setArray(newElements);
            }
            return oldValue;
        } finally {
            //释放锁
            lock.unlock();
        }
    }

**删除操作:**删除操作同理,将除要删除元素之外的其他元素拷贝到新副本中,然后切换引用,将原容器引用指向新副本。同属写操作,需要加锁。

get(int index)

    public E get(int index) {
        return get(getArray(), index);
    }

    final Object[] getArray() {
        return array;
    }

    private E get(Object[] a, int index) {
        return (E) a[index];
    }

获取操作:获取操作属于读操作,直接通过数组下标获取数据元素,没有加锁,所以保证了性能。

size()

    public int size() {
       //返回数组长度
        return getArray().length;
    }

和ArrayList不同,查看ArrayList源码阅读笔记,可以发现ArrayList中是有size属性的,这是因为ArrayList数组的长度实际是要大于集合的大小的。CopyOnWriteArrayList每次修改都是拷贝一份正好可以存储目标个数元素的数组,所以不需要size属性,直接返回数组长度即可。

如何保证线程安全

* 数组容器被 volatile 关键字修饰,保证了数组内存地址被任意线程修改后,都会通知到其他线程;* 对数组的所有修改操作,都进行了加锁,保证了同一时刻,只能有一个线程对数组进行修改,比如我在 add 时,就无法 remove;* 修改过程中对原数组进行了复制,是在新数组上进行修改的,修改过程中,不会对原数组产生任何影响。

总结

  • CopyOnWriteArrayList使用ReentrantLock重入锁加锁,保证线程安全;

  • CopyOnWriteArrayList的写操作都要先拷贝一份新数组,在新数组中做修改,修改完了再用新数组替换老数组,所以空间复杂度是O(n),性能相对低下;

  • CopyOnWriteArrayList的读操作支持随机访问,时间复杂度为O(1);

  • CopyOnWriteArrayList采用读写分离的思想,读操作不加锁,写操作加锁,且写操作占用较大内存空间,所以适用于读多写少的场合;

  • CopyOnWriteArrayList只保证最终一致性,不保证实时一致性;