前言
算法很重要,但是一般情况下做移动开发并不经常用到,所以很多同学早就将算法打了个大礼包送还给了老师了,况且很多同学并没有学习过算法。这个系列就让对算法头疼的同学能快速的掌握基本的算法。
1.算法的效率
虽然计算机能快速的完成运算处理,但实际上,它也需要根据输入数据的大小和算法效率来消耗一定的处理器资源。要想编写出能高效运行的程序,我们就需要考虑到算法的效率。 算法的效率主要由以下两个复杂度来评估: 时间复杂度:评估执行程序所需的时间。可以估算出程序对处理器的使用程度。 空间复杂度:评估执行程序所需的存储空间。可以估算出程序对计算机内存的使用程度。一般将算法的辅助空间作为衡量空间复杂度的标准
设计算法时,一般是要先考虑系统环境,然后权衡时间复杂度和空间复杂度,选取一个平衡点。不过,时间复杂度要比空间复杂度更容易产生问题,因此算法研究的主要也是时间复杂度,不特别说明的情况下,复杂度就是指时间复杂度。
2.时间复杂度
时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
时间复杂度 前面提到的时间频度T(n)中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律,为此我们引入时间复杂度的概念。一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数,记作T(n)=O(f(n)),它称为算法的渐进时间复杂度,简称时间复杂度。
3.大O表示法
像前面用O( )来体现算法时间复杂度的记法,我们称之为大O表示法。 算法复杂度可以从最理想情况、平均情况和最坏情况三个角度来评估,由于平均情况大多和最坏情况持平,而且评估最坏情况也可以避免后顾之忧,因此一般情况下,我们设计算法时都要直接估算最坏情况的复杂度。 大O表示法O(f(n)中的f(n)的值可以为1、n、logn、n²等,因此我们可以将O(1)、O(n)、O(logn)、O(n²)分别可以称为常数阶、线性阶、对数阶和平方阶,那么如何推导出f(n)的值呢?我们接着来看推导大O阶的方法。
推导大O阶 推导大O阶,我们可以按照如下的规则来进行推导,得到的结果就是大O表示法: 1.用常数1来取代运行时间中所有加法常数。 2.修改后的运行次数函数中,只保留最高阶项 3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。
常数阶 先举了例子,如下所示。
int sum = 0,n = 100; //执行一次
sum = (1+n)*n/2; //执行一次
System.out.println (sum); //执行一次 123
上面算法的运行的次数的函数为f(n)=3,根据推导大O阶的规则1,我们需要将常数3改为1,则这个算法的时间复杂度为O(1)。如果sum = (1+n)*n/2这条语句再执行10遍,因为这与问题大小n的值并没有关系,所以这个算法的时间复杂度仍旧是O(1),我们可以称之为常数阶。
线性阶 线性阶主要要分析循环结构的运行情况,如下所示。
for(int i=0;i<n;i++){
//时间复杂度为O(1)的算法
...
}1234
上面算法循环体中的代码执行了n次,因此时间复杂度为O(n)。
对数阶 接着看如下代码:
int number=1;
while(number<n){
number=number*2;
//时间复杂度为O(1)的算法
...
}123456
可以看出上面的代码,随着number每次乘以2后,都会越来越接近n,当number不小于n时就会退出循环。假设循环的次数为X,则由2^x=n得出x=log₂n,因此得出这个算法的时间复杂度为O(logn)。
平方阶 下面的代码是循环嵌套:
for(int i=0;i<n;i++){
for(int j=0;j<n;i++){
//复杂度为O(1)的算法
...
}
}123456
内层循环的时间复杂度在讲到线性阶时就已经得知是O(n),现在经过外层循环n次,那么这段算法的时间复杂度则为O(n²)。 接下来我们来算一下下面算法的时间复杂度:
for(int i=0;i<n;i++){
for(int j=i;j<n;i++){
//复杂度为O(1)的算法
...
}
}123456
需要注意的是内循环中int j=i,而不是int j=0。当i=0时,内循环执行了n次;i=1时内循环执行了n-1次,当i=n-1时执行了1次,我们可以推算出总的执行次数为:
n+(n-1)+(n-2)+(n-3)+……+1 =(n+1)+[(n-1)+2]+[(n-2)+3]+[(n-3)+4]+…… =(n+1)+(n+1)+(n+1)+(n+1)+…… =(n+1)n/2 =n(n+1)/2 =n²/2+n/2
根据此前讲过的推导大O阶的规则的第二条:只保留最高阶,因此保留n²/2。根据第三条去掉和这个项的常数,则去掉1/2,最终这段代码的时间复杂度为O(n²)。
其他常见复杂度
除了常数阶、线性阶、平方阶、对数阶,还有如下时间复杂度: f(n)=nlogn时,时间复杂度为O(nlogn),可以称为nlogn阶。 f(n)=n³时,时间复杂度为O(n³),可以称为立方阶。 f(n)=2ⁿ时,时间复杂度为O(2ⁿ),可以称为指数阶。 f(n)=n!时,时间复杂度为O(n!),可以称为阶乘阶。 f(n)=(√n时,时间复杂度为O(√n),可以称为平方根阶。
4.复杂度的比较
下面将算法中常见的f(n)值根据几种典型的数量级来列成一张表,根据这种表,我们来看看各种算法复杂度的差异。
| n | logn | √n | nlogn | n² | 2ⁿ | n! |
|---|---|---|---|---|---|---|
| 5 | 2 | 2 | 10 | 25 | 32 | 120 |
| 10 | 3 | 3 | 30 | 100 | 1024 | 3628800 |
| 50 | 5 | 7 | 250 | 2500 | 约10^15 | 约3.0*10^64 |
| 100 | 6 | 10 | 600 | 10000 | 约10^30 | 约9.3*10^157 |
| 1000 | 9 | 31 | 9000 | 1000 000 | 约10^300 | 约4.0*10^2567 |
从上表可以看出,O(n)、O(logn)、O(√n )、O(nlogn )随着n的增加,复杂度提升不大,因此这些复杂度属于效率高的算法,反观O(2ⁿ)和O(n!)当n增加到50时,复杂度就突破十位数了,这种效率极差的复杂度最好不要出现在程序中,因此在动手编程时要评估所写算法的最坏情况的复杂度。
下面给出一个更加直观的图:
其中x轴代表n值,y轴代表T(n)值(时间复杂度)。T(n)值随着n的值的变化而变化,其中可以看出O(n!)和O(2ⁿ)随着n值的增大,它们的T(n)值上升幅度非常大,而O(logn)、O(n)、O(nlogn)随着n值的增大,T(n)值上升幅度则很小。 常用的时间复杂度按照耗费的时间从小到大依次是:
O(1)<O(logn)<O(n)<O(nlogn)<O(n²)<O(n³)<O(2ⁿ)<O(n!)
5.数据结构操作的复杂性
| 数据结构 | 连接 | 查找 | 插入 | 删除 |
|---|---|---|---|---|
| 数组 | 1 | n | n | n |
| 栈 | n | n | 1 | 1 |
| 队列 | n | n | 1 | 1 |
| 链表 | n | n | 1 | 1 |
| 哈希表 | - | n | n | n |
| 二分查找树 | n | n | n | n |
| B树 | log(n) | log(n) | log(n) | log(n) |
| 红黑树 | log(n) | log(n) | log(n) | log(n) |
| AVL树 | log(n) | log(n) | log(n) | log(n) |
6.数组排序算法的复杂性
| 名称 | 最优 | 平均 | 最坏 | 内存 | 稳定 |
|---|---|---|---|---|---|
| 冒泡排序 | n | n^2 | n^2 | 1 | Yes |
| 插入排序 | n | n^2 | n^2 | 1 | Yes |
| 选择排序 | n^2 | n^2 | n^2 | 1 | No |
| 堆排序 | n log(n) | n log(n) | n log(n) | 1 | No |
| 归并排序 | n log(n) | n log(n) | n log(n) | n | Yes |
| 快速排序 | n log(n) | n log(n) | n^2 | log(n) | No |
| 希尔排序 | n log(n) | 取决于差距序列 | n (log(n))^2 | 1 | No |
7.习题练手
**求时间复杂度:**找执行次数最多的语句
- 某程序段如下,要求给出其时间复杂度。
for ( i = 0 ; i < n ; i++) //n+1次
x = x + 1 ; //n次
( A ) O ( n ) ( B ) O ( n^2 )
( C ) O ( n^3 ) ( D ) 以上皆非
- 选A
- 某程序段如下,要求给出其时间复杂度。
for ( i = 0 ; i < n ; i++) //n+1次
for ( j = i ; j < n ; j++ ) //n+1+n次
for ( k = j; k < n ; k++ ) //n+1+2n+3(n-1) + … +n(n-n)次
m = 1 ; //n+2(n-1)+3(n-2)+ … +n(n-(n-1))次
( A ) O ( n ) ( B ) O ( n^2 )
( C ) O ( n^3 ) ( D ) 以上皆非
- 选A
- 某程序段如下,要求给出其时间复杂度。
for ( i = 0 ; i < n ; i++) //n+1次
for ( j = 0 ; j < n ; j++ ) //n+1次
for ( k = 0; k < n ; k++ ) //n+1次
m = 1 ; //n*n*n次
( A ) O ( n ) ( B ) O ( n^2 )
( C ) O ( n^3 ) ( D ) 以上皆非
- 选C
- 某程序段如下,要求给出其时间复杂度。
x = 1 0 0 0 0 0 0 ;
while ( x != 5 )
x = x / 1 0 ;
( A ) O ( n ) ( B ) O ( n^2 )
( C ) O ( n^3 ) ( D ) 以上皆非
-
死循环(不可能等于5),选D
- 某程序段如下,要求给出其时间复杂度。
j = n ;
for ( i = 0 ; i < j ; i++) //n+1次
{
while ( j >= 2 )
j = j / 2 ; //log2n
}
( A ) O ( n ) ( B ) O ( n^2 )
( C ) O ( n^3 ) ( D ) 以上皆非
-
选D
当 j = n时,会执行 floor(log2 n)次
floor: 向下取整
- 将两个数交换,要求给出其空间复杂度。
swap(int x, int y) //x与y交换
{
int temp;
temp = x; //temp为辅助空间
x = y;
y = temp;
}
( A ) O ( 1 ) ( B ) O ( n)
( C ) O ( n^2 ) ( D ) 以上皆非
- 该算法使用了一个辅助空间temp,故空间复杂度为 O ( 1 )