iOS底层原理之方法慢速查找探究

1,208 阅读3分钟

我们在iOS底层原理之_objc_msgSend方法查找中知道,_objc_msgSend主要是通过汇编快速找到方法的,这次我们研究方法慢速查找。

准备工作

代码准备

我们还是定义一个继承与NSObject的类,命名为LGPerson,在该类中定义一个实例方法,不用去实现(为了方便探究慢速查找的流程)

@interface LGPerson : NSObject
- (void)sayHello;
@end

在main函数中

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        // insert code here...
        LGPerson *person = [LGPerson alloc];
        [person sayHello];

    }
    return 0;
}

引入lookUpImpOrForward

在 [person sayHello]处打上断点,运行代码,查看汇编我们找到objc_msgSend方法点击进入objc_msgSend方法中找到进入到objc_msgSend_uncached方法并进入objc_msgSend_uncached方法中找到了lookUpImpOrForward方法及其在源码文件的位置

lookUpImpOrForward方法探究

lookupImpOrForward源码

IMP lookUpImpOrForward(id inst, SEL sel, Class cls, int behavior)
{
    const IMP forward_imp = (IMP)_objc_msgForward_impcache;
    IMP imp = nil;
    Class curClass;

    runtimeLock.assertUnlocked();

    // Optimistic cache lookup
    if (fastpath(behavior & LOOKUP_CACHE)) {
        imp = cache_getImp(cls, sel);
        if (imp) goto done_nolock;
    }

    runtimeLock.lock();

    checkIsKnownClass(cls);

    if (slowpath(!cls->isRealized())) {
        cls = realizeClassMaybeSwiftAndLeaveLocked(cls, runtimeLock);
        // runtimeLock may have been dropped but is now locked again
    }

    if (slowpath((behavior & LOOKUP_INITIALIZE) && !cls->isInitialized())) {
        cls = initializeAndLeaveLocked(cls, inst, runtimeLock);
    }

    runtimeLock.assertLocked();
    curClass = cls;

    for (unsigned attempts = unreasonableClassCount();;) {
        // curClass method list.
        Method meth = getMethodNoSuper_nolock(curClass, sel);
        if (meth) {
            imp = meth->imp;
            goto done;
        }

        if (slowpath((curClass = curClass->superclass) == nil)) {
            // No implementation found, and method resolver didn't help.
            // Use forwarding.
            imp = forward_imp;
            break;
        }

        // Halt if there is a cycle in the superclass chain.
        if (slowpath(--attempts == 0)) {
            _objc_fatal("Memory corruption in class list.");
        }

        // Superclass cache.
        imp = cache_getImp(curClass, sel); // 有问题???? cache_getImp - lookup - lookUpImpOrForward
        if (slowpath(imp == forward_imp)) {
            break;
        }
        if (fastpath(imp)) {
            goto done;
        }
    }

    if (slowpath(behavior & LOOKUP_RESOLVER)) {
        behavior ^= LOOKUP_RESOLVER;
        return resolveMethod_locked(inst, sel, cls, behavior);
    }

 done:
    log_and_fill_cache(cls, imp, sel, inst, curClass);
    runtimeLock.unlock();
 done_nolock:
    if (slowpath((behavior & LOOKUP_NIL) && imp == forward_imp)) {
        return nil;
    }
    return imp;
}

lookupImpOrForward源码分析

lookupImpOrForward主要就是查找方法并返回imp

  • _objc_msgForward_impcache:从缓存中查找方法
  • checkIsKnownClass:当前要查找的类是否是系统已知的,即是否是我们创建的,只有是系统已知的才能对方法、属性、协议等存储以及查找
  • realizeClassMaybeSwiftAndLeaveLocked:该方法主要是获得当前对象继承关系,部分代码如下
  • initializeAndLeaveLocked:主要是系统方法的自动调用,比如initalize或者reload
  • getMethodNoSuper_nolock:从当前类查找方法
  • slowpath((curClass = curClass->superclass) == nil:从父类查找方法,并将父类赋值给curClass
  • imp = cache_getImp(curClass, sel):从当前类(已经是父类了)的缓存中查找
  • resolveMethod_locked:当前类、父类均没有找到则给予一次补救机会

done方法分析

log_and_fill_cache

代码

log_and_fill_cache(Class cls, IMP imp, SEL sel, id receiver, Class implementer)
{
#if SUPPORT_MESSAGE_LOGGING
    if (slowpath(objcMsgLogEnabled && implementer)) {
        bool cacheIt = logMessageSend(implementer->isMetaClass(), 
                                      cls->nameForLogging(),
                                      implementer->nameForLogging(), 
                                      sel);
        if (!cacheIt) return;
    }
#endif
    // objc_msgSend -> 二分查找自己 -> cache_fill -> objc_msgSend
    //
    cache_fill(cls, sel, imp, receiver);
}

我们点击cache_fill方法进入查看

getMethodNoSuper_nolock方法查找探究

源码

getMethodNoSuper_nolock(Class cls, SEL sel)
{
    runtimeLock.assertLocked();

    ASSERT(cls->isRealized());
    // fixme nil cls? 
    // fixme nil sel?

    auto const methods = cls->data()->methods();
    for (auto mlists = methods.beginLists(),
              end = methods.endLists();
         mlists != end;
         ++mlists)
    {
        method_t *m = search_method_list_inline(*mlists, sel);
        if (m) return m;
    }

    return nil;
}

点击search_method_list_inline方法,在search_method_list_inline中查找findMethodInSortedMethodList

findMethodInSortedMethodList分析

源码实现

ALWAYS_INLINE static method_t *
findMethodInSortedMethodList(SEL key, const method_list_t *list)
{
    ASSERT(list);

    const method_t * const first = &list->first;
    const method_t *base = first;
    const method_t *probe;
    uintptr_t keyValue = (uintptr_t)key;
    uint32_t count;
    
    for (count = list->count; count != 0; count >>= 1) {
        probe = base + (count >> 1);
        
        uintptr_t probeValue = (uintptr_t)probe->name;
        
        if (keyValue == probeValue) {
            // `probe` is a match.
            // Rewind looking for the *first* occurrence of this value.
            // This is required for correct category overrides.
            while (probe > first && keyValue == (uintptr_t)probe[-1].name) {
                probe--;
            }
            return (method_t *)probe;
        }
        
        if (keyValue > probeValue) {
            base = probe + 1;
            count--;
        }
    }
    
    return nil;
}

从源码我们可以分析得出,方法列表一定是有序的,因为使用了二分查找,为什么是二分查找呢?重点是count >> 1,比如0000 10008,左移一位变为0000 0100成为4,所以是二分查找。该方法最终实现了在方法列表中查找方法的实现。(二分法速度还是可以的,对于查找有兴趣的可以查看数据结构与算法之查找专题

方法慢速查找总结

  • 从缓存中查找,找到则返回,否则进入方法列表
  • 从方法列表查找,此处使用二分查找,找到则返回,没有找到,若父类存在则进入父类查找,否则在返回nil之前有一次处理机会
  • 将父类赋值给当前类,重复上述动作,直到父类不存在
  • 最终找到imp则存入缓存中