tensorflow2学习
线性框架 f(x) = ax+b
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize']=(10,10)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
num_points = 1000
vectors_set = []
for i in range(num_points):
x1 = np.random.normal(0.0,0.55)
y1 = x1*0.1+0.3+np.random.normal(0.0,0.03)
vectors_set.append([x1,y1])
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set]
model = tf.keras.Sequential(
tf.keras.layers.Dense(units=1,input_shape=(1,))
)
model.compile(optimizer='adam',loss='mse')
model.fit(x_data,y_data,epochs=1000)
w,b = model.layers[0].get_weights()
print(w,b)
[[0.09715978]] [0.2983961]