导语
struct objc_class : objc_object {
// Class ISA; // 继承自父类的属性
Class superclass;
cache_t cache; // formerly cache pointer and vtable
class_data_bits_t bits; // class_rw_t * plus custom rr/alloc flags
}
前面的文章中,我们分析了 isa 和 bits,本次文章,我们分析 cache。
catch_t 数据结构
cache_t 源码
#if defined(__arm64__) && __LP64__
// 64位真机
#define CACHE_MASK_STORAGE CACHE_MASK_STORAGE_HIGH_16
#elif defined(__arm64__) && !__LP64__
// 非64位真机
#define CACHE_MASK_STORAGE CACHE_MASK_STORAGE_LOW_4
#else
// 其他(包括模拟器的 x86_64)
#define CACHE_MASK_STORAGE CACHE_MASK_STORAGE_OUTLINED
#endif
struct cache_t {
#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED
// 模拟器 x86
explicit_atomic<struct bucket_t *> _buckets;
explicit_atomic<mask_t> _mask;
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16
// 64 位真机
explicit_atomic<uintptr_t> _maskAndBuckets;
mask_t _mask_unused;
static constexpr uintptr_t maskShift = 48;
static constexpr uintptr_t maskZeroBits = 4;
/**
内存占用示意图
|--|---|----|
64--48--44----1
[49,64] 存储 mask 信息,共16位
[1,48] 存储 Buckets 信息,但是 [45,48]区域强制为0,因此可用的只有 [0,44] 共44位
*/
static constexpr uintptr_t maxMask = ((uintptr_t)1 << (64 - maskShift)) - 1;
static constexpr uintptr_t bucketsMask = ((uintptr_t)1 << (maskShift - maskZeroBits)) - 1;
static_assert(bucketsMask >= MACH_VM_MAX_ADDRESS, "Bucket field doesn't have enough bits for arbitrary pointers.");
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4
// 其他非64位真机设备,没必要看
explicit_atomic<uintptr_t> _maskAndBuckets;
mask_t _mask_unused;
static constexpr uintptr_t maskBits = 4;
static constexpr uintptr_t maskMask = (1 << maskBits) - 1;
static constexpr uintptr_t bucketsMask = ~maskMask;
#else
#error Unknown cache mask storage type.
#endif
#if __LP64__
uint16_t _flags;
#endif
uint16_t _occupied;
public
// 读取 sel 的函数
inline SEL sel() const { ... }
// 读取 imp 的函数
inline IMP imp(Class cls) const { ... }
};
bucket_t 源码
// bucket_t 结构体存储了一对 imp 和 sel
struct bucket_t {
private:
// IMP-first is better for arm64e ptrauth and no worse for arm64.
// SEL-first is better for armv7* and i386 and x86_64.
#if __arm64__
explicit_atomic<uintptr_t> _imp;
explicit_atomic<SEL> _sel;
#else
explicit_atomic<SEL> _sel;
explicit_atomic<uintptr_t> _imp;
#endif
至此,我们可以得到一个大致的印象。
catch_t 存储了一个列表,列表中的每一项存储了一对 sel 和 imp。
查找方法的时候,可以先到cache_t 中查询,直接查到 imp 可以提高访问速度。
catch_t 缓存方法
实验代码
#import <Foundation/Foundation.h>
#import <objc/runtime.h>
@interface BClass: NSObject
- (void)method1;
- (void)method2;
- (void)method3;
- (void)method4;
- (void)method5;
- (void)method6;
@end
@implementation BClass
- (void)method1{
NSLog(@"%s", __func__);
};
- (void)method2{
NSLog(@"%s", __func__);
};
- (void)method3{
NSLog(@"%s", __func__);
};
- (void)method4{
NSLog(@"%s", __func__);
};
- (void)method5{
NSLog(@"%s", __func__);
};
- (void)method6{
NSLog(@"%s", __func__);
};
@end
int main(int argc, const char * argv[]) {
@autoreleasepool {
// insert code here...
BClass *b = [BClass alloc];
Class bClass = [BClass class];
[b method1]; // 断点1
[b method2]; // 断点2
[b method3];
[b method4];
[b method5];
[b method6];
NSLog(@"");
}
return 0;
}
lldb
// 断点1
(lldb) p/x bClass
(Class) $0 = 0x0000000100002338 BClass
(lldb) p/x (cache_t *)0x0000000100002348 // 在类的存储结构里,第三个8字节是存储的cache_t
(cache_t *) $1 = 0x0000000100002348
(lldb) p *$1
(cache_t) $2 = {
_buckets = {
std::__1::atomic<bucket_t *> = 0x000000010032e430 {
_sel = {
std::__1::atomic<objc_selector *> = (null)
}
_imp = {
std::__1::atomic<unsigned long> = 0
}
}
}
_mask = {
std::__1::atomic<unsigned int> = 0
}
_flags = 32784
_occupied = 0 // 占用个数为0
}
2020-09-21 23:19:34.030091+0800 KCObjc[2991:32284] -[BClass method1]
// 进入断点2
(lldb) p *$1
(cache_t) $3 = {
_buckets = {
std::__1::atomic<bucket_t *> = 0x00000001007059f0 {
_sel = {
std::__1::atomic<objc_selector *> = ""
}
_imp = {
std::__1::atomic<unsigned long> = 10696
}
}
}
_mask = {
std::__1::atomic<unsigned int> = 3
}
_flags = 32784
_occupied = 1 // 此时占用个数变为了1
}
(lldb) p *($3.buckets()) // 输出 cache_t.buckets 的信息
(bucket_t) $5 = {
_sel = {
std::__1::atomic<objc_selector *> = ""
}
_imp = {
std::__1::atomic<unsigned long> = 10696
}
}
(lldb) p $5.sel() // 读取方法
(SEL) $6 = "method1"
(lldb) p $5.imp(bClass) // 读取imp
(IMP) $7 = 0x0000000100000af0 (KCObjc`-[BClass method1] at main.m:25)
2020-09-21 23:22:16.671684+0800 KCObjc[2991:32284] -[BClass method2]
// 进入断点3
(lldb) p *$1
(cache_t) $2 = {
_buckets = {
std::__1::atomic<bucket_t *> = 0x0000000101972d20 {
_sel = {
std::__1::atomic<objc_selector *> = ""
}
_imp = {
std::__1::atomic<unsigned long> = 10696
}
}
}
_mask = {
std::__1::atomic<unsigned int> = 3
}
_flags = 32784
_occupied = 2 // 占用个数变为了2
}
// 进入断点4
(lldb) p *$1
(cache_t) $3 = {
_buckets = {
std::__1::atomic<bucket_t *> = 0x000000010064db70 {
_sel = {
std::__1::atomic<objc_selector *> = (null)
}
_imp = {
std::__1::atomic<unsigned long> = 0
}
}
}
_mask = {
std::__1::atomic<unsigned int> = 7
}
_flags = 32784
_occupied = 1 // 占用个数又变为了1
}
我们可以看到,_occupied 从零变到2,又变回了1,这中间到底发生了什么?
下面我们来探讨方法的缓存原理。
缓存流程实验环境搭建
// 下面的结构体都是参照源码中的 x86 结构体构造的,成员的大小相同,顺序一致。因此,在下面强制指向系统 class 内存之后,读取内容的时候,偏移量是正确的
struct jy_bucket_t {
SEL _sel;
uintptr_t _imp;
};
struct jy_cache_t {
struct jy_bucket_t * _buckets;
uint32_t _mask;
uint16_t _flags;
uint16_t _occupied;
};
struct jy_class_data_bits_t {
uintptr_t bits;
};
struct jy_objc_class {
Class ISA;
Class superclass;
struct jy_cache_t cache;
struct jy_class_data_bits_t bits;
};
int main(int argc, const char * argv[]) {
@autoreleasepool {
// insert code here...
BClass *b = [BClass alloc];
Class bClass = [BClass class];
[b method1];
[b method2];
[b method3];
[b method4];
[b method5];
[b method6];
// 将类的内存地址使用我们自定义的类结构体,由于内存偏移对的上,因此可以正确读取内容
struct jy_objc_class *jy_class = (__bridge struct jy_objc_class *)(bClass);
// struct 指针变量要用 -> 读取内容。
NSLog(@"_occupied: %hu, _mask:%u",jy_class->cache._occupied, jy_class->cache._mask);
// 我们读取mask中每一个值
for (uint32_t i = 0; i < jy_class->cache._mask; i ++) {
// 取出每个bucket
struct jy_bucket_t bucket = jy_class->cache._buckets[i];
// 打印sel 和 imp
NSLog(@"第%u个: sel:%@ imp:%p ", i, NSStringFromSelector(bucket._sel), bucket._imp);
}
}
return 0;
}
输出信息
2020-09-21 23:47:57.482728+0800 KCObjc[4201:45645] -[BClass method1]
2020-09-21 23:47:57.483278+0800 KCObjc[4201:45645] -[BClass method2]
2020-09-21 23:47:57.483337+0800 KCObjc[4201:45645] -[BClass method3]
2020-09-21 23:47:57.483380+0800 KCObjc[4201:45645] -[BClass method4]
2020-09-21 23:47:57.483419+0800 KCObjc[4201:45645] -[BClass method5]
2020-09-21 23:47:57.483457+0800 KCObjc[4201:45645] -[BClass method6]
2020-09-21 23:47:57.483492+0800 KCObjc[4201:45645] _occupied: 4, _mask:7
2020-09-21 23:47:57.483686+0800 KCObjc[4201:45645] 第0个: sel:method6 imp:0x2998
2020-09-21 23:47:57.483802+0800 KCObjc[4201:45645] 第1个: sel:(null) imp:0x0
2020-09-21 23:47:57.483858+0800 KCObjc[4201:45645] 第2个: sel:(null) imp:0x0
2020-09-21 23:47:57.483909+0800 KCObjc[4201:45645] 第3个: sel:(null) imp:0x0
2020-09-21 23:47:57.483989+0800 KCObjc[4201:45645] 第4个: sel:method3 imp:0x2908
2020-09-21 23:47:57.484044+0800 KCObjc[4201:45645] 第5个: sel:method4 imp:0x2938
2020-09-21 23:47:57.484094+0800 KCObjc[4201:45645] 第6个: sel:method5 imp:0x29e8
从输出中可以看出,_buckets 是乱序的。
缓存流程
在 cache_t 中我们找到下面两个方法, 是跟 buckets 和 occupied 有关
void incrementOccupied();
void setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask);
void cache_t::incrementOccupied()
{
// 仅自增
_occupied++;
}
调用 setBucketsAndMask 的方法链如下图
cache_t::insert
void cache_t::insert(Class cls, SEL sel, IMP imp, id receiver)
{
// ... 省略
// Use the cache as-is if it is less than 3/4 full
mask_t newOccupied = occupied() + 1;
unsigned oldCapacity = capacity(), capacity = oldCapacity;
if (slowpath(isConstantEmptyCache())) {
// Cache is read-only. Replace it.
if (!capacity) capacity = INIT_CACHE_SIZE;
reallocate(oldCapacity, capacity, /* freeOld */false);
}
else if (fastpath(newOccupied + CACHE_END_MARKER <= capacity / 4 * 3)) {
// Cache is less than 3/4 full. Use it as-is.
}
else {
capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
if (capacity > MAX_CACHE_SIZE) {
capacity = MAX_CACHE_SIZE;
}
reallocate(oldCapacity, capacity, true);
}
bucket_t *b = buckets();
mask_t m = capacity - 1;
// hash 算法 (mask_t)(uintptr_t)sel & mask;
// 取余算法,因此并不是按照顺序插入的
mask_t begin = cache_hash(sel, m);
mask_t i = begin;
// Scan for the first unused slot and insert there.
// There is guaranteed to be an empty slot because the
// minimum size is 4 and we resized at 3/4 full.
do {
if (fastpath(b[i].sel() == 0)) {
incrementOccupied();
b[i].set<Atomic, Encoded>(sel, imp, cls);
return;
}
if (b[i].sel() == sel) {
// The entry was added to the cache by some other thread
// before we grabbed the cacheUpdateLock.
return;
}
} while (fastpath((i = cache_next(i, m)) != begin));
cache_t::bad_cache(receiver, (SEL)sel, cls);
}
reallocate
void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld)
{
bucket_t *oldBuckets = buckets();
bucket_t *newBuckets = allocateBuckets(newCapacity);
// Cache's old contents are not propagated.
// This is thought to save cache memory at the cost of extra cache fills.
// fixme re-measure this
ASSERT(newCapacity > 0);
ASSERT((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
setBucketsAndMask(newBuckets, newCapacity - 1);
if (freeOld) {
cache_collect_free(oldBuckets, oldCapacity);
}
}
模拟器 setBucketsAndMask
void cache_t::setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask)
{
// objc_msgSend uses mask and buckets with no locks.
// It is safe for objc_msgSend to see new buckets but old mask.
// (It will get a cache miss but not overrun the buckets' bounds).
// It is unsafe for objc_msgSend to see old buckets and new mask.
// Therefore we write new buckets, wait a lot, then write new mask.
// objc_msgSend reads mask first, then buckets.
#ifdef __arm__
// ensure other threads see buckets contents before buckets pointer
mega_barrier();
_buckets.store(newBuckets, memory_order::memory_order_relaxed);
// ensure other threads see new buckets before new mask
mega_barrier();
_mask.store(newMask, memory_order::memory_order_relaxed);
_occupied = 0;
#elif __x86_64__ || i386
// ensure other threads see buckets contents before buckets pointer
_buckets.store(newBuckets, memory_order::memory_order_release);
// ensure other threads see new buckets before new mask
_mask.store(newMask, memory_order::memory_order_release);
_occupied = 0;
#else
#error Don't know how to do setBucketsAndMask on this architecture.
#endif
}
64位真机 setBucketsAndMask
void cache_t::setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask)
{
uintptr_t buckets = (uintptr_t)newBuckets;
uintptr_t mask = (uintptr_t)newMask;
ASSERT(buckets <= bucketsMask);
ASSERT(mask <= maxMask);
_maskAndBuckets.store(((uintptr_t)newMask << maskShift) | (uintptr_t)newBuckets, std::memory_order_relaxed);
_occupied = 0;
}