iOS-类的cache_t分析

232 阅读6分钟

前言

类的结构objc_class中,除了isa,superclass和bits,还有一个非常重要的成员:cache,接下来我们就探索下这个cache

cache_t内存结构

研究肯定要从源码开始:

struct cache_t {
#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED
    explicit_atomic<struct bucket_t *> _buckets;
    explicit_atomic<mask_t> _mask;
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16
    explicit_atomic<uintptr_t> _maskAndBuckets;
    mask_t _mask_unused;
    
    // How much the mask is shifted by.
    static constexpr uintptr_t maskShift = 48;
    
    // Additional bits after the mask which must be zero. msgSend
    // takes advantage of these additional bits to construct the value
    // `mask << 4` from `_maskAndBuckets` in a single instruction.
    static constexpr uintptr_t maskZeroBits = 4;
    
    // The largest mask value we can store.
    static constexpr uintptr_t maxMask = ((uintptr_t)1 << (64 - maskShift)) - 1;
    
    // The mask applied to `_maskAndBuckets` to retrieve the buckets pointer.
    static constexpr uintptr_t bucketsMask = ((uintptr_t)1 << (maskShift - maskZeroBits)) - 1;
    
    // Ensure we have enough bits for the buckets pointer.
    static_assert(bucketsMask >= MACH_VM_MAX_ADDRESS, "Bucket field doesn't have enough bits for arbitrary pointers.");
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4
    // _maskAndBuckets stores the mask shift in the low 4 bits, and
    // the buckets pointer in the remainder of the value. The mask
    // shift is the value where (0xffff >> shift) produces the correct
    // mask. This is equal to 16 - log2(cache_size).
    explicit_atomic<uintptr_t> _maskAndBuckets;
    mask_t _mask_unused;

    static constexpr uintptr_t maskBits = 4;
    static constexpr uintptr_t maskMask = (1 << maskBits) - 1;
    static constexpr uintptr_t bucketsMask = ~maskMask;
#else
#error Unknown cache mask storage type.
#endif
    
#if __LP64__
    uint16_t _flags;
#endif
    uint16_t _occupied;
...
}

分析源码,可以逐级精简:

精简宏定义:

struct cache_t {
#if // mac或者模拟器
    explicit_atomic<struct bucket_t *> _buckets;
    explicit_atomic<mask_t> _mask;
#elif // 真机
    explicit_atomic<uintptr_t> _maskAndBuckets;
    mask_t _mask_unused;
    
    // How much the mask is shifted by.
    static constexpr uintptr_t maskShift = 48;
    
    // Additional bits after the mask which must be zero. msgSend
    // takes advantage of these additional bits to construct the value
    // `mask << 4` from `_maskAndBuckets` in a single instruction.
    static constexpr uintptr_t maskZeroBits = 4;
    
    // The largest mask value we can store.
    static constexpr uintptr_t maxMask = ((uintptr_t)1 << (64 - maskShift)) - 1;
    
    // The mask applied to `_maskAndBuckets` to retrieve the buckets pointer.
    static constexpr uintptr_t bucketsMask = ((uintptr_t)1 << (maskShift - maskZeroBits)) - 1;
    
    // Ensure we have enough bits for the buckets pointer.
    static_assert(bucketsMask >= MACH_VM_MAX_ADDRESS, "Bucket field doesn't have enough bits for arbitrary pointers.");
#elif // 真机,非LP64
    // _maskAndBuckets stores the mask shift in the low 4 bits, and
    // the buckets pointer in the remainder of the value. The mask
    // shift is the value where (0xffff >> shift) produces the correct
    // mask. This is equal to 16 - log2(cache_size).
    explicit_atomic<uintptr_t> _maskAndBuckets;
    mask_t _mask_unused;

    static constexpr uintptr_t maskBits = 4;
    static constexpr uintptr_t maskMask = (1 << maskBits) - 1;
    static constexpr uintptr_t bucketsMask = ~maskMask;
#else
#error Unknown cache mask storage type.
#endif
    
#if LP64
    uint16_t _flags;
#endif
    uint16_t _occupied;
...
}

精简static变量

分析下变量名_maskAndBuckets和static变量名称,可猜测,static的变量应该是一些掩码运算相关,_maskAndBuckets类似于isa那样,存储了将mask和buckets数据存到一个变量中,可以精简

struct cache_t {
#if // mac或者模拟器
    explicit_atomic<struct bucket_t *> _buckets;
    explicit_atomic<mask_t> _mask;
#elif // 真机
    explicit_atomic<uintptr_t> _maskAndBuckets;
    mask_t _mask_unused;
#elif // 真机,非LP64
    explicit_atomic<uintptr_t> _maskAndBuckets;
    mask_t _mask_unused;
#else
#error Unknown cache mask storage type.
#endif
    
#if LP64
    uint16_t _flags;
#endif
    uint16_t _occupied;
...
}

精简explicit_atomic

explicit_atomic看定义是一个泛型结构,从名字分析,应该是为了数据操作的原子性,与内存结构没有太大关系,可精简:

struct cache_t {
#if // mac或者模拟器
    struct bucket_t * _buckets;
    mask_t _mask;
#elif // 真机
    uintptr_t _maskAndBuckets;
    mask_t _mask_unused;
#elif // 真机,非LP64
    uintptr_t _maskAndBuckets;
    mask_t _mask_unused;
#else
#error Unknown cache mask storage type.
#endif
    
#if LP64
    uint16_t _flags;
#endif
    uint16_t _occupied;
...
}

完整的精简后结构

添加一些对于成员的操作接口后,完整的精简结构,如下:

struct cache_t {
#if // mac或者模拟器
    struct bucket_t * _buckets;
    mask_t _mask;
#elif // 真机
    uintptr_t _maskAndBuckets;
    mask_t _mask_unused;
#elif // 真机,非LP64
    uintptr_t _maskAndBuckets;
    mask_t _mask_unused;
#else
#error Unknown cache mask storage type.
#endif
    
#if LP64
    uint16_t _flags;
#endif
    uint16_t _occupied;

	struct bucket_t *buckets();
    mask_t mask();
    mask_t occupied();
    void incrementOccupied();
}

cache_t的存储内容

分析完内存结构后,我们肯定想知道具体存储的数据是什么。主要的存储变量应该是buckets,猜测对应的应该是个数组或者说集合。

bucket_t

精简后的bucket_t源码定义:

struct bucket_t {
private:
#if __arm64__
    uintptr_t _imp;
    SEL _sel;
#else
    SEL _sel;
    uintptr_t _imp;
#endif

public:
    inline SEL sel()

    inline IMP imp(Class cls)
}

即一个bucket_t存储了一对数据:sel、imp,有两个重要api来获取对应的数据。

验证

我们通过代码调试来看一下cache和bucket具体存储的内容

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        LGPerson *p  = [LGPerson alloc];
        Class pClass = [LGPerson class];
        [p sayHello];
        [p sayCode];
        [p sayMaster];
    }
    return 0;
}

sayHellosayCode调用行设断点.

方法调用前

sayHello调用行设断点,LLDB指令打印下cache.利用内存偏移,cache在class中偏移了16字节(isa+superclass)。

(lldb) p/x pClass  //类对象地址
(Class) $0 = 0x0000000100002298 LGPerson

(lldb) p (cache_t*)0x00000001000022a8 // 地址偏移16字节
(cache_t *) $1 = 0x00000001000022a8
(lldb) p *$1  // 打印cache_t
(cache_t) $2 = {
  _buckets = {
    std::__1::atomic<bucket_t *> = 0x00000001003eb460 {
      _sel = {
        std::__1::atomic<objc_selector *> = 0x0000000000000000
      }
      _imp = {
        std::__1::atomic<unsigned long> = 0
      }
    }
  }
  _mask = {
    std::__1::atomic<unsigned int> = 0
  }
  _flags = 32804
  _occupied = 0  // _occupied 为0
}
(lldb) p (bucket_t*)$2.buckets()  // 读取buckets
(bucket_t *) $3 = 0x00000001003eb460
(lldb) p $3->sel()
(SEL) $4 = <no value available>
(lldb) p $3->imp(pClass)
(IMP) $5 = 0x0000000000000000
(lldb) 

方法调用前,cache_t的buckets内没有内容,occupied = 0

调用第一个方法后

断点sayCode处再次打印:

(lldb) p *$1
(cache_t) $6 = {
  _buckets = {
    std::__1::atomic<bucket_t *> = 0x0000000100706a60 {
      _sel = {
        std::__1::atomic<objc_selector *> = 0x0000000100000e3c
      }
      _imp = {
        std::__1::atomic<unsigned long> = 11928
      }
    }
  }
  _mask = {
    std::__1::atomic<unsigned int> = 3
  }
  _flags = 32804
  _occupied = 1
}
(lldb) p $6.buckets()
(bucket_t *) $7 = 0x0000000100706a60
(lldb) p $7->sel()
(SEL) $8 = "sayHello"
(lldb) p $7->imp(pClass)
(IMP) $9 = 0x0000000100000c00 (KCObjc`-[LGPerson sayHello])
(lldb) 

cache中buckets有值,sel是"sayHello",imp是对应的函数指针, occupied=1。

继续调用方法

(lldb) p *$1
(cache_t) $10 = {
  _buckets = {
    std::__1::atomic<bucket_t *> = 0x0000000102b04270 {
      _sel = {
        std::__1::atomic<objc_selector *> = 0x0000000100000e3c
      }
      _imp = {
        std::__1::atomic<unsigned long> = 11928
      }
    }
  }
  _mask = {
    std::__1::atomic<unsigned int> = 3
  }
  _flags = 32804
  _occupied = 2
}
(lldb) p $10.buckets()
(bucket_t *) $11 = 0x0000000102b04270
(lldb) p $11->sel()
(SEL) $12 = "sayHello"
(lldb) p (bucket_t *)0x0000000102b04280
(bucket_t *) $13 = 0x0000000102b04280
(lldb) p $13->sel()
(SEL) $14 = "sayCode"
(lldb) 

cache中buckets存储了两个bucket_t指针,分别是"sayHello""sayCode"以及对应的imp occupied=2。

总结: cache_t中存储了调用过的方法的sel和imp,即缓存了最近调用的方法

cache如何存储的sel和imp

incrementOccupied

cache存储增长时,_occupied会跟着增长。搜索_occupied,发现除了初始化为0外,只有incrementOccupied中会增长_occupied,可以得出cache存储时会调用incrementOccupied

void cache_t::incrementOccupied() 
{
    _occupied++;
}

cahce_t::insert: 向cache中增加一条sel和imp记录

搜索incrementOccupied,只有cache_t::insert中使用。分析源码:

ALWAYS_INLINE
void cache_t::insert(Class cls, SEL sel, IMP imp, id receiver)
{
#if CONFIG_USE_CACHE_LOCK
    cacheUpdateLock.assertLocked();
#else
    runtimeLock.assertLocked();
#endif

    ASSERT(sel != 0 && cls->isInitialized());
	
    // 1. 容量控制:开辟或者扩容
    // Use the cache as-is if it is less than 3/4 full
    mask_t newOccupied = occupied() + 1;
    unsigned oldCapacity = capacity(), capacity = oldCapacity;
    // 1.1 如果cache为空,开辟空间:初始容量为4
    if (slowpath(isConstantEmptyCache())) {
        // Cache is read-only. Replace it.
        if (!capacity) capacity = INIT_CACHE_SIZE;
        reallocate(oldCapacity, capacity, /* freeOld */false);
    }
    // 1.2 如果插入后,占用将会少于容量的四分之三,不做处理
    else if (fastpath(newOccupied + CACHE_END_MARKER <= capacity / 4 * 3)) {
        // Cache is less than 3/4 full. Use it as-is.
    }
    // 1.3 插入后,占用等于或超过四分之三,扩容容量翻倍。注意扩容是重新分配空间,原来的存储将会释放,即以前的数据会丢失掉
    else { 
        capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
        if (capacity > MAX_CACHE_SIZE) {
            capacity = MAX_CACHE_SIZE;
        }
        reallocate(oldCapacity, capacity, true);
    }
	
    // 2. 开始插入数据
    bucket_t *b = buckets();
    mask_t m = capacity - 1;
    // 2.1 利用hash算法,计算出插入的位置
    mask_t begin = cache_hash(sel, m);
    mask_t i = begin;

    // Scan for the first unused slot and insert there.
    // There is guaranteed to be an empty slot because the
    // minimum size is 4 and we resized at 3/4 full.
    do {
    	// 2.2 如果该位置为空,直接插入
        if (fastpath(b[i].sel() == 0)) {
            incrementOccupied();
            b[i].set<Atomic, Encoded>(sel, imp, cls);
            return;
        }
        // 2.3 如果该位置已经插入对应的sel,直接返回
        if (b[i].sel() == sel) {
            // The entry was added to the cache by some other thread
            // before we grabbed the cacheUpdateLock.
            return;
        }
        // 2.4 否则,该位置已经放了别的sel,则需要通过chche_next找到下一个存储位置
    } while (fastpath((i = cache_next(i, m)) != begin));

	// 2.5 出错处理
    cache_t::bad_cache(receiver, (SEL)sel, cls);
}

cache_hash散列函数

{
    return (mask_t)(uintptr_t)sel & mask;
}

三列函数:sel的地址和掩码mask进行位与运算。mask值是容量减去1,确保计算出的index不会超出。

cache_nexthash碰撞的解决

#if __arm__  ||  __x86_64__  ||  __i386__
// objc_msgSend has few registers available.
// Cache scan increments and wraps at special end-marking bucket.
#define CACHE_END_MARKER 1
static inline mask_t cache_next(mask_t i, mask_t mask) {
    return (i+1) & mask;
}

#elif __arm64__
// objc_msgSend has lots of registers available.
// Cache scan decrements. No end marker needed.
#define CACHE_END_MARKER 0
static inline mask_t cache_next(mask_t i, mask_t mask) {
    return i ? i-1 : mask;
}

#else
#error unknown architecture
#endif

当位置冲突是,采用开放定址法查找下一个位置:基本上就是向前或者向后注意查找。

总结: cache采用散列表的方式存储方法sel和imp:

  1. 初始容量为4
  2. 超过3/4则扩容,同时以前的存储丢弃
  3. 采用sel作为key,进行hash计算,确定存储位置
  4. 采用开放定址法解决hash碰撞