1. cache_t内存结构
首先查看源码结构
struct cache_t {
#if 1 // Mac
struct bucket_t * _buckets;
mask_t _mask;
#elif 1 // 真机
uintptr_t _maskAndBuckets;
mask_t _mask_unused;
// How much the mask is shifted by.
static constexpr uintptr_t maskShift = 48;
// Additional bits after the mask which must be zero. msgSend
// takes advantage of these additional bits to construct the value
// `mask << 4` from `_maskAndBuckets` in a single instruction.
static constexpr uintptr_t maskZeroBits = 4;
// The largest mask value we can store.
static constexpr uintptr_t maxMask = ((uintptr_t)1 << (64 - maskShift)) - 1;
// The mask applied to `_maskAndBuckets` to retrieve the buckets pointer.
static constexpr uintptr_t bucketsMask = ((uintptr_t)1 << (maskShift - maskZeroBits)) - 1;
#endif
uint16_t _flags; // 标志位
uint16_t _occupied; // 被占用的
public:
static bucket_t *emptyBuckets();
struct bucket_t *buckets();
mask_t mask();
mask_t occupied();
void incrementOccupied();
void setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask);
void initializeToEmpty();
unsigned capacity();
bool isConstantEmptyCache();
bool canBeFreed();
void reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld);
void insert(Class cls, SEL sel, IMP imp, id receiver);
};
2. cache_t 插入一条数据, 每当对象调用一个方法时,如果在cache里面没有找到,就会insert 一条缓存
void cache_t::insert(Class cls, SEL sel, IMP imp, id receiver)
{
// Use the cache as-is if it is less than 3/4 full
mask_t newOccupied = occupied() + 1;
unsigned oldCapacity = capacity(), capacity = oldCapacity;
// 1. 如果Cache 是空的话,会初始化一个 4 个字节的空间
if (slowpath(isConstantEmptyCache())) {
// Cache is read-only. Replace it.
if (!capacity) capacity = INIT_CACHE_SIZE;
reallocate(oldCapacity, capacity, /* freeOld */false);
}
else if (fastpath(newOccupied + CACHE_END_MARKER <= capacity / 4 * 3)) {
// Cache is less than 3/4 full. Use it as-is.
// 2. newOccupied + CACHE_END_MARKER <= capacity / 4 * 3 ,直接插入
}
else {
// 3. 否则会扩容
capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
if (capacity > MAX_CACHE_SIZE) {
capacity = MAX_CACHE_SIZE;
}
reallocate(oldCapacity, capacity, true);
}
// 4. 初始化一个指针数组
bucket_t *b = buckets();
// 5. 设置掩码为 capacity - 1
mask_t m = capacity - 1;
// 6. 根据sel 计算 hash 值
mask_t begin = cache_hash(sel, m);
mask_t i = begin;
/*
* 扫描第一个未使用的插槽,并且插入
*/
// Scan for the first unused slot and insert there.
// There is guaranteed to be an empty slot because the
// minimum size is 4 and we resized at 3/4 full.
do {
// 7. 当前 插槽 取到 的sel 地址为0, 那么插入新的值
if (fastpath(b[i].sel() == 0)) {
// 8. 增加占用字段并且插入
incrementOccupied();
b[i].set<Atomic, Encoded>(sel, imp, cls);
return;
}
// 8. 多线程做的判断
if (b[i].sel() == sel) {
// The entry was added to the cache by some other thread
// before we grabbed the cacheUpdateLock.
return;
}
// 9. 如果当前位置已有值,那么就找下一个位置
} while (fastpath((i = cache_next(i, m)) != begin));
}
// 10. hash 算法, 保证不会越界
static inline mask_t cache_hash(SEL sel, mask_t mask)
{
return (mask_t)(uintptr_t)sel & mask;
}
3. 在objc Demo 中调试 Cache
@interface Person : NSObject
@property (nonatomic, copy) NSString *nickName;
@property (nonatomic, strong) NSString *name;
- (void)test1;
- (void)test2;
- (void)test3;
- (void)test4;
- (void)test5;
- (void)test6;
- (void)test7;
- (void)test8;
- (void)test9;
- (void)eat;
@end
@implementation Person
- (void)test1{NSLog(@"%s",__func__);}
- (void)test2{NSLog(@"%s",__func__);}
- (void)test3{NSLog(@"%s",__func__);}
- (void)test4{NSLog(@"%s",__func__);}
- (void)test5{NSLog(@"%s",__func__);}
- (void)test6{NSLog(@"%s",__func__);}
- (void)test7{NSLog(@"%s",__func__);}
- (void)test8{NSLog(@"%s",__func__);}
- (void)test9{NSLog(@"%s",__func__);}
- (void)eat {NSLog(@"Person _cmd-> %p SEL-> %p", _cmd, @selector(eat));}
@end
Person *objc2 = [Person alloc];
[objc2 test1];
[objc2 test2];
// 1. 获取当前类对象
(lldb) p/x Person.class
(Class) $0 = 0x00000001000033b0 Person
// 2. 获取当前类对象 的 cache, 当前类对象 + 16 (ISA + SuperClass)
(lldb) p (cache_t *)0x00000001000033c0
(cache_t *) $1 = 0x00000001000033c0
// 3. 打印当前cache, 发现 _occupied = 0,_mask = 0;
// 说明当前的Cache是空的
(lldb) p *$1
(cache_t) $2 = {
_buckets = {
std::__1::atomic<bucket_t *> = 0x000000010032f410 {
_sel = {
std::__1::atomic<objc_selector *> = (null)
}
_imp = {
std::__1::atomic<unsigned long> = 0
}
}
}
_mask = {
std::__1::atomic<unsigned int> = 0
}
_flags = 32804
_occupied = 0
}
// 4. 调用 test1 方法, 再打印Cache,发现 _occupied = 1,_mask = 3;_buckets 的首地址却是null,说明cache 没有插入在第一位置上,说明底层用的不是数组
2020-09-17 11:42:34.453871+0800 KCObjc[29193:2560315] -[Person test1]
(lldb) p *$1
(cache_t) $3 = {
_buckets = {
std::__1::atomic<bucket_t *> = 0x0000000100742520 {
_sel = {
std::__1::atomic<objc_selector *> = (null)
}
_imp = {
std::__1::atomic<unsigned long> = 0
}
}
}
_mask = {
std::__1::atomic<unsigned int> = 3
}
_flags = 32804
_occupied = 1
}
// 4.1 打印 buckets 数组
(lldb) p $1->buckets()
(bucket_t *) $4 = 0x0000000100742520
// 4.1 打印 _mask 数组
(lldb) p $1->_mask
(explicit_atomic<unsigned int>) $5 = {
std::__1::atomic<unsigned int> = 3
}
// 5.1 打印 buckets 数组第一个元素,发现是null
(lldb) p $4[0]
(bucket_t) $6 = {
_sel = {
std::__1::atomic<objc_selector *> = (null)
}
_imp = {
std::__1::atomic<unsigned long> = 0
}
}
// 5.2 打印 buckets 数组第二个元素,发现是null
(lldb) p $4[1]
(bucket_t) $7 = {
_sel = {
std::__1::atomic<objc_selector *> = (null)
}
_imp = {
std::__1::atomic<unsigned long> = 0
}
}
// 5.3 打印 buckets 数组第三个元素,发现不是null
(lldb) p $4[2]
(bucket_t) $8 = {
_sel = {
std::__1::atomic<objc_selector *> = ""
}
_imp = {
std::__1::atomic<unsigned long> = 10416
}
}
// 5.4 打印 bucket_t 的 SEL
(lldb) p $4[2].sel()
(SEL) $9 = "test1"
// 5.5 打印 bucket_t 的 IMP
(lldb) p $4[2].imp(Person.class)
(IMP) $10 = 0x0000000100001b00 (Objc`-[Person test1])
4. 在普通的Mac工程里面Debug 方法Cache
#import <Foundation/Foundation.h>
#import <objc/runtime.h>
typedef uint32_t mask_t;
struct g_bucket_t {
// 注意顺序,x86_64 和 arm64 的架构正好相反
SEL _sel;
IMP _imp;
};
struct g_cache_t {
struct g_bucket_t * _buckets;
mask_t _mask;
uint16_t _flags;
uint16_t _occupied;
};
struct g_class_data_bits_t {
uintptr_t bits;
};
struct g_objc_class {
Class ISA;
Class superclass;
struct g_cache_t cache; // formerly cache pointer and vtable
struct g_class_data_bits_t bits; // class_rw_t * plus custom rr/alloc flags
};
void debugCache(struct g_objc_class *cls) {
NSLog(@"-----------------------------------------");
NSLog(@"_occupied->%hu _mask->%u",cls->cache._occupied, cls->cache._mask);
for (int i= 0; i<cls->cache._mask; i++) {
struct g_bucket_t bucket = cls->cache._buckets[i];
NSLog(@"sel->%@ imp: %p", NSStringFromSelector(bucket._sel),bucket._imp);
}
}
int main(int argc, char * argv[]) {
struct g_objc_class *cls = (__bridge struct g_objc_class *)([Person class]);
Person *objc2 = [Person alloc];
debugCache(cls);
[objc2 test1];
debugCache(cls);
[objc2 test2];
[objc2 test3];
[objc2 test4];
[objc2 test5];
[objc2 test6];
[objc2 test7];
[objc2 test8];
[objc2 test9];
[objc2 test1];
[objc2 test1];
debugCache(cls);
return 0;
}
output:
-----------------------------------------
// 没有调用其任何方法,所有 _occupied 为0
_occupied->0 _mask->0
-[Person test1]
-----------------------------------------
// 调用了 test1 ,所有 _occupied 为1,_mask = 4 - 1
_occupied->1 _mask->3
sel->(null) imp: 0x0
sel->(null) imp: 0x0
sel->test1 imp: 0x2b90
-[Person test2]
-[Person test3]
-[Person test4]
-[Person test5]
-[Person test6]
-[Person test7]
-[Person test8]
-[Person test9]
-[Person test1]
-[Person test1]
-----------------------------------------
// 调用了很多方法 ,所有 _occupied 为3,_mask = 16 - 1,
// 当每次缓存不够用的话,都会重新扩容,删掉旧的缓存
_occupied->3 _mask->15
sel->(null) imp: 0x0
sel->(null) imp: 0x0
sel->(null) imp: 0x0
sel->(null) imp: 0x0
sel->test8 imp: 0x2960
sel->(null) imp: 0x0
sel->(null) imp: 0x0
sel->(null) imp: 0x0
sel->(null) imp: 0x0
sel->(null) imp: 0x0
sel->test9 imp: 0x2910
sel->test1 imp: 0x2b90
sel->(null) imp: 0x0
sel->(null) imp: 0x0
sel->(null) imp: 0x0
总结 cache_t 使用了 hash表存储缓存,每当对象调用一个方法时,如果在cache里面没有找到,就会insert 一条缓存。