为什么需要树这种数据结构
- 数组存储方式的分析
优点:通过下标方式访问元素,速度快。对于有序数组,还可使用二分查找提高检索速度。
缺点:如果要检索具体某个值,或者插入值(按一定顺序)会整体移动,效率较低 - 链式存储方式的分析
优点:在一定程度上对数组存储方式有优化(比如:插入一个数值节点,只需要将插入节点,链接到链表中即可, 删除效率也很好)。
缺点:在进行检索时,效率仍然较低,比如(检索某个值,需要从头节点开始遍历) - 树存储方式的分析
能提高数据存储,读取的效率, 比如利用 二叉排序树(Binary Sort Tree),既可以保证数据的检索速度,同时也可以保证数据的插入,删除,修改的速度。
案例: [7, 3, 10, 1, 5, 9, 12]
二叉树
概念
1.树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。
2.二叉树的子节点分为左节点和右节点。
3.如果该二叉树的所有叶子节点都在最后一层,并且结点总数= 2^n -1 , n 为层数,则我们称为满二叉树。
4.如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树。
遍历
前序遍历: 先输出父节点,再遍历左子树和右子树
中序遍历: 先遍历左子树,再输出父节点,再遍历右子树
后序遍历: 先遍历左子树,再遍历右子树,最后输出父节点
小结: 看输出父节点的顺序,就确定是前序,中序还是后序
前-> 父左右; 中->左父右; 后->左右父;
//编写前序遍历的方法
public void preOrder() {
System.out.println(this); //先输出父结点
//递归向左子树前序遍历
if(this.left != null) {
this.left.preOrder();
}
//递归向右子树前序遍历
if(this.right != null) {
this.right.preOrder();
}
}
//中序遍历
public void infixOrder() {
//递归向左子树中序遍历
if(this.left != null) {
this.left.infixOrder();
}
//输出父结点
System.out.println(this);
//递归向右子树中序遍历
if(this.right != null) {
this.right.infixOrder();
}
}
//后序遍历
public void postOrder() {
if(this.left != null) {
this.left.postOrder();
}
if(this.right != null) {
this.right.postOrder();
}
System.out.println(this);
}
查找节点
//前序遍历查找 : 4次
/**
*
* @param no 查找no
* @return 如果找到就返回该Node ,如果没有找到返回 null
*/
public HeroNode preOrderSearch(int no) {
System.out.println("进入前序遍历");
//比较当前结点是不是
if(this.no == no) {
return this;
}
//1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
//2.如果左递归前序查找,找到结点,则返回
HeroNode resNode = null;
if(this.left != null) {
resNode = this.left.preOrderSearch(no);
}
if(resNode != null) {//说明我们左子树找到
return resNode;
}
//1.左递归前序查找,找到结点,则返回,否继续判断,
//2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
if(this.right != null) {
resNode = this.right.preOrderSearch(no);
}
return resNode;
}
//中序遍历查找 : 3次
public HeroNode infixOrderSearch(int no) {
//判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
HeroNode resNode = null;
if(this.left != null) {
resNode = this.left.infixOrderSearch(no);
}
if(resNode != null) {
return resNode;
}
System.out.println("进入中序查找");
//如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点
if(this.no == no) {
return this;
}
//否则继续进行右递归的中序查找
if(this.right != null) {
resNode = this.right.infixOrderSearch(no);
}
return resNode;
}
//后序遍历查找 : 2次
public HeroNode postOrderSearch(int no) {
//判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
HeroNode resNode = null;
if(this.left != null) {
resNode = this.left.postOrderSearch(no);
}
if(resNode != null) {//说明在左子树找到
return resNode;
}
//如果左子树没有找到,则向右子树递归进行后序遍历查找
if(this.right != null) {
resNode = this.right.postOrderSearch(no);
}
if(resNode != null) {
return resNode;
}
System.out.println("进入后序查找");
//如果左右子树都没有找到,就比较当前结点是不是
if(this.no == no) {
return this;
}
return resNode;
}
删除节点
如果删除的节点是叶子节点,则删除该节点
如果删除的节点是非叶子节点,则删除该子树.
测试,删除掉 5号叶子节点 和 3号子树.
public void delNode(int no) {
if (root != null) {
//如果刚好删除就是root,就相当于清空该二叉树
if (root.getNo() == no) {
root = null;
} else {
root.delNode(no);
}
}
}
public void delNode(int no) {
if (this.left!=null && this.left.no == no) {
this.left = null;
return;
}
//判断是否删除的右子节点
if (this.right!=null && this.right.no == no) {
this.right = null;
return;
}
//递归向左子树查找,并删除
if (this.left != null) {
this.left.delNode(no);
}
//递归向右子树查找,并删除
if (this.right != null) {
this.right.delNode(no);
}
}
顺序二叉树
从数据存储来看,数组存储方式和树的存储方式可以相互转换,即数组可以转换成树,树也可以转换成数组
顺序存储二叉树的特点:
1.顺序二叉树通常只考虑完全二叉树
2.第n个元素的左子节点为 2 * n + 1
3.第n个元素的右子节点为 2 * n + 2
4.第n个元素的父节点为 (n-1) / 2
n : 表示二叉树中的第几个元素(按0开始编号)
//编写一个ArrayBinaryTree, 实现顺序存储二叉树遍历
class ArrBinaryTree {
private int[] arr;//存储数据结点的数组
public ArrBinaryTree(int[] arr) {
this.arr = arr;
}
//重载preOrder
public void preOrder() {
this.preOrder(0);
}
//编写一个方法,完成顺序存储二叉树的前序遍历
/**
*
* @param index 数组的下标
*/
public void preOrder(int index) {
//如果数组为空,或者 arr.length = 0
if(arr == null || arr.length == 0) {
System.out.println("数组为空,不能按照二叉树的前序遍历");
}
//输出当前这个元素
System.out.println(arr[index]);
//向左递归遍历
if((index * 2 + 1) < arr.length) {
preOrder(2 * index + 1 );
}
//向右递归遍历
if((index * 2 + 2) < arr.length) {
preOrder(2 * index + 2);
}
}
}
线索二叉树
问题分析:
当我们对上面的二叉树进行中序遍历时,数列为 {8, 3, 10, 1, 6, 14 }
但是 6, 8, 10, 14 这几个节点的 左右指针,并没有完全的利用上.
如果我们希望充分的利用 各个节点的左右指针, 让各个节点可以指向自己的前后节点,怎么办?
解决方案-线索二叉树
线索二叉树基本介绍
n个结点的二叉链表中含有n+1 【公式 2n-(n-1)=n+1】 个空指针域。利用二叉链表中的空指针域,存放指向该结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索")
这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种
一个结点的前一个结点,称为前驱结点
一个结点的后一个结点,称为后继结点