1.堆的基础知识
- 插入一个数:h[++n],up(n)
- 求集合中最小值:h[1]
- 删除最下值:h[1]=h[n],n--,down(1)
- 删除任意元素:h[k]=h[n],n--,up(k),down(k)只会执行一个
- 修改任意元素:h[k] = x,up(k),down(k)只会执行一个
2.基础题目
class Solution {
public:
vector<int> res;
vector<int> h;
int n;
vector<int> getLeastNumbers(vector<int>& arr, int k) {
n = arr.size()-1;
h = arr;
for(int i = n / 2; i >= 0; i --) down(i);
while(k --)
{
res.push_back(h[0]);
h[0] = h[n];
n --;
down(0);
}
return res;
}
void down(int u)
{
int t = u;
if(u * 2 <= n && h[u * 2] < h[t]) t = u * 2;
if(u * 2 + 1 <= n && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
if(u != t)
{
swap(h[u], h[t]);
down(t);
}
}
};
class MedianFinder {
public:
priority_queue<int> max_heap;
priority_queue<int,vector<int>,greater<int>> min_heap;
MedianFinder() {
}
void addNum(int num) {
max_heap.push(num);
if(min_heap.size() && max_heap.top() > min_heap.top())
{
auto maxv = max_heap.top() ,minv = min_heap.top();
max_heap.pop(),min_heap.pop();
max_heap.push(minv),min_heap.push(maxv);
}
if(max_heap.size() > min_heap.size() + 1)
{
min_heap.push(max_heap.top());
max_heap.pop();
}
}
double findMedian() {
if(max_heap.size() + min_heap.size() & 1) return max_heap.top();
return (max_heap.top() + min_heap.top())/2.0;
}
};