十、位移提交
Consumer 需要向 Kafka 汇报自己的位移数据,这个汇报过程被称为提交位移(Committing Offsets)。因为 Consumer 能够同时消费多个分区的数据,所以位移的提交实际上是在分区粒度上进行的,即Consumer 需要为分配给它的每个分区提交各自的位移数据。
提交位移主要是为了表征 Consumer 的消费进度,这样当 Consumer 发生故障重启之后,就能够从 Kafka 中读取之前提交的位移值,然后从相应的位移处继续消费,从而避免整个消费过程重来一遍。
这一点特别关键。因为位移提交非常灵活,你完全可以提交任何位移值,但由此产生的后果你也要一并承担。假设你的 Consumer 消费了 10 条消息,你提交的位移值却是 20,那么从理论上讲,位移介于 11~19 之间的消息是有可能丢失的;相反地,如果你提交的位移值是 5,那么位移介于 5~9 之间的消息就有可能被重复消费。所以,我想再强调一下,位移提交的语义保障是由你来负责的,Kafka 只会“无脑”地接受你提交的位移。你对位移提交的管理直接影响了你的 Consumer 所能提供的消息语义保障。
鉴于位移提交甚至是位移管理对 Consumer 端的巨大影响,Kafka,特别是 KafkaConsumer API,提供了多种提交位移的方法。从用户的角度来说,位移提交分为自动提交和手动提交;从 Consumer 端的角度来说,位移提交分为同步提交和异步提交。
自动提交和手动提交
所谓自动提交,就是指 Kafka Consumer 在后台默默地为你提交位移,作为用户的你完全不必操心这些事;而手动提交,则是指你要自己提交位移,Kafka Consumer 压根不管。
开启自动提交位移的方法很简单。Consumer 端有个参数 enable.auto.commit,把它设置为 true 或者压根不设置它就可以了。因为它的默认值就是 true,即 Java Consumer 默认就是自动提交位移的。如果启用了自动提交,Consumer 端还有个参数就派上用场了:auto.commit.interval.ms。它的默认值是 5 秒,表明 Kafka 每 5 秒会为你自动提交一次位移。
为了把这个问题说清楚,我给出了完整的 Java 代码。这段代码展示了设置自动提交位移的方法。有了这段代码做基础,今天后面的讲解我就不再展示完整的代码了。
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "test");
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "2000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList("foo", "bar"));
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records)
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
和自动提交相反的,就是手动提交了。开启手动提交位移的方法就是设置 enable.auto.commit 为 false。但是,仅仅设置它为 false 还不够,因为你只是告诉 Kafka Consumer 不要自动提交位移而已,你还需要调用相应的 API 手动提交位移。
最简单的 API 就是KafkaConsumer#commitSync()。该方法会提交 KafkaConsumer#poll() 返回的最新位移。从名字上来看,它是一个同步操作,即该方法会一直等待,直到位移被成功提交才会返回。如果提交过程中出现异常,该方法会将异常信息抛出。下面这段代码展示了 commitSync() 的使用方法:
while (true) {
ConsumerRecords<String, String> records =
consumer.poll(Duration.ofSeconds(1));
process(records); // 处理消息
try {
consumer.commitSync();
} catch (CommitFailedException e) {
handle(e); // 处理提交失败异常
}
}
可见,调用 consumer.commitSync() 方法的时机,是在你处理完了 poll() 方法返回的所有消息之后。如果你莽撞地过早提交了位移,就可能会出现消费数据丢失的情况。那么你可能会问,自动提交位移就不会出现消费数据丢失的情况了吗?它能恰到好处地把握时机进行位移提交吗?为了搞清楚这个问题,我们必须要深入地了解一下自动提交位移的顺序。
一旦设置了 enable.auto.commit 为 true,Kafka 会保证在开始调用 poll 方法时,提交上次 poll 返回的所有消息。从顺序上来说,poll 方法的逻辑是先提交上一批消息的位移,再处理下一批消息,因此它能保证不出现消费丢失的情况。但自动提交位移的一个问题在于,它可能会出现重复消费。
在默认情况下,Consumer 每 5 秒自动提交一次位移。现在,我们假设提交位移之后的 3 秒发生了 Rebalance 操作。在 Rebalance 之后,所有 Consumer 从上一次提交的位移处继续消费,但该位移已经是 3 秒前的位移数据了,故在 Rebalance 发生前 3 秒消费的所有数据都要重新再消费一次。虽然你能够通过减少 auto.commit.interval.ms 的值来提高提交频率,但这么做只能缩小重复消费的时间窗口,不可能完全消除它。这是自动提交机制的一个缺陷。
反观手动提交位移,它的好处就在于更加灵活,你完全能够把控位移提交的时机和频率。但是,它也有一个缺陷,就是在调用 commitSync() 时,Consumer 程序会处于阻塞状态,直到远端的 Broker 返回提交结果,这个状态才会结束。在任何系统中,因为程序而非资源限制而导致的阻塞都可能是系统的瓶颈,会影响整个应用程序的 TPS。当然,你可以选择拉长提交间隔,但这样做的后果是 Consumer 的提交频率下降,在下次 Consumer 重启回来后,会有更多的消息被重新消费。
鉴于这个问题,Kafka 社区为手动提交位移提供了另一个 API 方法:KafkaConsumer#commitAsync()。从名字上来看它就不是同步的,而是一个异步操作。调用 commitAsync() 之后,它会立即返回,不会阻塞,因此不会影响 Consumer 应用的 TPS。由于它是异步的,Kafka 提供了回调函数(callback),供你实现提交之后的逻辑,比如记录日志或处理异常等。下面这段代码展示了调用 commitAsync() 的方法:
while (true) {
ConsumerRecords<String, String> records =
consumer.poll(Duration.ofSeconds(1));
process(records); // 处理消息
consumer.commitAsync((offsets, exception) -> {
if (exception != null)
handle(exception);
});
}
commitAsync 是否能够替代 commitSync 呢?答案是不能。commitAsync 的问题在于,出现问题时它不会自动重试。因为它是异步操作,倘若提交失败后自动重试,那么它重试时提交的位移值可能早已经“过期”或不是最新值了。因此,异步提交的重试其实没有意义,所以 commitAsync 是不会重试的。
显然,如果是手动提交,我们需要将 commitSync 和 commitAsync 组合使用才能到达最理想的效果,原因有两个:
我们可以利用 commitSync 的自动重试来规避那些瞬时错误,比如网络的瞬时抖动,Broker 端 GC 等。因为这些问题都是短暂的,自动重试通常都会成功,因此,我们不想自己重试,而是希望 Kafka Consumer 帮我们做这件事。 我们不希望程序总处于阻塞状态,影响 TPS。 我们来看一下下面这段代码,它展示的是如何将两个 API 方法结合使用进行手动提交。
try {
while (true) {
ConsumerRecords<String, String> records =
consumer.poll(Duration.ofSeconds(1));
process(records); // 处理消息
commitAysnc(); // 使用异步提交规避阻塞
}
} catch (Exception e) {
handle(e); // 处理异常
} finally {
try {
consumer.commitSync(); // 最后一次提交使用同步阻塞式提交
} finally {
consumer.close();
}
}
这段代码同时使用了 commitSync() 和 commitAsync()。对于常规性、阶段性的手动提交,我们调用 commitAsync() 避免程序阻塞,而在 Consumer 要关闭前,我们调用 commitSync() 方法执行同步阻塞式的位移提交,以确保 Consumer 关闭前能够保存正确的位移数据。将两者结合后,我们既实现了异步无阻塞式的位移管理,也确保了 Consumer 位移的正确性,所以,如果你需要自行编写代码开发一套 Kafka Consumer 应用,那么我推荐你使用上面的代码范例来实现手动的位移提交。
更进一步
我们说了自动提交和手动提交,也说了同步提交和异步提交,这些就是 Kafka 位移提交的全部了吗?其实,我们还差一部分。
实际上,Kafka Consumer API 还提供了一组更为方便的方法,可以帮助你实现更精细化的位移管理功能。刚刚我们聊到的所有位移提交,都是提交 poll 方法返回的所有消息的位移,比如 poll 方法一次返回了 500 条消息,当你处理完这 500 条消息之后,前面我们提到的各种方法会一次性地将这 500 条消息的位移一并处理。简单来说,就是直接提交最新一条消息的位移。但如果我想更加细粒度化地提交位移,该怎么办呢?
设想这样一个场景:你的 poll 方法返回的不是 500 条消息,而是 5000 条。那么,你肯定不想把这 5000 条消息都处理完之后再提交位移,因为一旦中间出现差错,之前处理的全部都要重来一遍。这类似于我们数据库中的事务处理。很多时候,我们希望将一个大事务分割成若干个小事务分别提交,这能够有效减少错误恢复的时间。
在 Kafka 中也是相同的道理。对于一次要处理很多消息的 Consumer 而言,它会关心社区有没有方法允许它在消费的中间进行位移提交。比如前面这个 5000 条消息的例子,你可能希望每处理完 100 条消息就提交一次位移,这样能够避免大批量的消息重新消费。
庆幸的是,Kafka Consumer API 为手动提交提供了这样的方法:commitSync(Map<TopicPartition, OffsetAndMetadata>) 和 commitAsync(Map<TopicPartition, OffsetAndMetadata>)。它们的参数是一个 Map 对象,键就是 TopicPartition,即消费的分区,而值是一个 OffsetAndMetadata 对象,保存的主要是位移数据。
就拿刚刚提过的那个例子来说,如何每处理 100 条消息就提交一次位移呢?在这里,我以 commitAsync 为例,展示一段代码,实际上,commitSync 的调用方法和它是一模一样的。
private Map<TopicPartition, OffsetAndMetadata> offsets = new HashMap<>();
int count = 0;
……
while (true) {
ConsumerRecords<String, String> records =
consumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> record: records) {
process(record); // 处理消息
offsets.put(new TopicPartition(record.topic(), record.partition()),
new OffsetAndMetadata(record.offset() + 1);
if(count % 100 == 0)
consumer.commitAsync(offsets, null); // 回调处理逻辑是 null
count++;
}
}
简单解释一下这段代码。程序先是创建了一个 Map 对象,用于保存 Consumer 消费处理过程中要提交的分区位移,之后开始逐条处理消息,并构造要提交的位移值。还记得之前我说过要提交下一条消息的位移吗?这就是这里构造 OffsetAndMetadata 对象时,使用当前消息位移加 1 的原因。代码的最后部分是做位移的提交。我在这里设置了一个计数器,每累计 100 条消息就统一提交一次位移。与调用无参的 commitAsync 不同,这里调用了带 Map 对象参数的 commitAsync 进行细粒度的位移提交。这样,这段代码就能够实现每处理 100 条消息就提交一次位移,不用再受 poll 方法返回的消息总数的限制了。
十一、CommitFailedException异常
所谓 CommitFailedException,顾名思义就是 Consumer 客户端在提交位移时出现了错误或异常,而且还是那种不可恢复的严重异常。如果异常是可恢复的瞬时错误,提交位移的 API 自己就能规避它们了,因为很多提交位移的 API 方法是支持自动错误重试的,比如我们在上一期中提到的commitSync 方法。
从源代码方面来说,CommitFailedException 异常通常发生在手动提交位移时,即用户显式调用 KafkaConsumer.commitSync() 方法时。从使用场景来说,有两种典型的场景可能遭遇该异常。
场景一
我们先说说最常见的场景。当消息处理的总时间超过预设的 max.poll.interval.ms 参数值时,Kafka Consumer 端会抛出 CommitFailedException 异常。这是该异常最“正宗”的登场方式。你只需要写一个 Consumer 程序,使用 KafkaConsumer.subscribe 方法随意订阅一个主题,之后设置 Consumer 端参数 max.poll.interval.ms=5 秒,最后在循环调用 KafkaConsumer.poll 方法之间,插入 Thread.sleep(6000) 和手动提交位移,就可以成功复现这个异常了。在这里,我展示一下主要的代码逻辑。
…
Properties props = new Properties();
…
props.put("max.poll.interval.ms", 5000);
consumer.subscribe(Arrays.asList("test-topic"));
while (true) {
ConsumerRecords<String, String> records =
consumer.poll(Duration.ofSeconds(1));
// 使用 Thread.sleep 模拟真实的消息处理逻辑
Thread.sleep(6000L);
consumer.commitSync();
}
如果要防止这种场景下抛出异常,你需要简化你的消息处理逻辑。具体来说有 4 种方法。
- 缩短单条消息处理的时间。比如,之前下游系统消费一条消息的时间是 100 毫秒,优化之后成功地下降到 50 毫秒,那么此时 Consumer 端的 TPS 就提升了一倍。
- 增加 Consumer 端允许下游系统消费一批消息的最大时长。这取决于 Consumer 端参数 max.poll.interval.ms 的值。在最新版的 Kafka 中,该参数的默认值是 5 分钟。如果你的消费逻辑不能简化,那么提高该参数值是一个不错的办法。值得一提的是,Kafka 0.10.1.0 之前的版本是没有这个参数的,因此如果你依然在使用 0.10.1.0 之前的客户端 API,那么你需要增加 session.timeout.ms 参数的值。不幸的是,session.timeout.ms 参数还有其他的含义,因此增加该参数的值可能会有其他方面的“不良影响”,这也是社区在 0.10.1.0 版本引入 max.poll.interval.ms 参数,将这部分含义从 session.timeout.ms 中剥离出来的原因之一。
- 减少下游系统一次性消费的消息总数。这取决于 Consumer 端参数 max.poll.records 的值。当前该参数的默认值是 500 条,表明调用一次 KafkaConsumer.poll 方法,最多返回 500 条消息。可以说,该参数规定了单次 poll 方法能够返回的消息总数的上限。如果前两种方法对你都不适用的话,降低此参数值是避免 CommitFailedException 异常最简单的手段。
- 下游系统使用多线程来加速消费。这应该算是“最高级”同时也是最难实现的解决办法了。具体的思路就是,让下游系统手动创建多个消费线程处理 poll 方法返回的一批消息。之前你使用 Kafka Consumer 消费数据更多是单线程的,所以当消费速度无法匹及 Kafka Consumer 消息返回的速度时,它就会抛出 CommitFailedException 异常。如果是多线程,你就可以灵活地控制线程数量,随时调整消费承载能力,再配以目前多核的硬件条件,该方法可谓是防止 CommitFailedException 最高档的解决之道。事实上,很多主流的大数据流处理框架使用的都是这个方法,比如 Apache Flink 在集成 Kafka 时,就是创建了多个 KafkaConsumerThread 线程,自行处理多线程间的数据消费。不过,凡事有利就有弊,这个方法实现起来并不容易,特别是在多个线程间如何处理位移提交这个问题上,更是极容易出错。
综合以上这 4 个处理方法,我个人推荐你首先尝试采用方法 1 来预防此异常的发生。优化下游系统的消费逻辑是百利而无一害的法子,不像方法 2、3 那样涉及到 Kafka Consumer 端 TPS 与消费延时(Latency)的权衡。如果方法 1 实现起来有难度,那么你可以按照下面的法则来实践方法 2、3。
首先,你需要弄清楚你的下游系统消费每条消息的平均延时是多少。比如你的消费逻辑是从 Kafka 获取到消息后写入到下游的 MongoDB 中,假设访问 MongoDB 的平均延时不超过 2 秒,那么你可以认为消息处理需要花费 2 秒的时间。如果按照 max.poll.records 等于 500 来计算,一批消息的总消费时长大约是 1000 秒,因此你的 Consumer 端的 max.poll.interval.ms 参数值就不能低于 1000 秒。如果你使用默认配置,那默认值 5 分钟显然是不够的,你将有很大概率遭遇 CommitFailedException 异常。将 max.poll.interval.ms 增加到 1000 秒以上的做法就属于上面的第 2 种方法。
除了调整 max.poll.interval.ms 之外,你还可以选择调整 max.poll.records 值,减少每次 poll 方法返回的消息数。还拿刚才的例子来说,你可以设置 max.poll.records 值为 150,甚至更少,这样每批消息的总消费时长不会超过 300 秒(150*2=300),即 max.poll.interval.ms 的默认值 5 分钟。这种减少 max.poll.records 值的做法就属于上面提到的方法 3。
场景二
之前我们花了很多时间学习 Kafka 的消费者,不过大都集中在消费者组上,即所谓的 Consumer Group。其实,Kafka Java Consumer 端还提供了一个名为 Standalone Consumer 的独立消费者。它没有消费者组的概念,每个消费者实例都是独立工作的,彼此之间毫无联系。不过,你需要注意的是,独立消费者的位移提交机制和消费者组是一样的,因此独立消费者的位移提交也必须遵守之前说的那些规定,比如独立消费者也要指定 group.id 参数才能提交位移。你可能会觉得奇怪,既然是独立消费者,为什么还要指定 group.id 呢?没办法,谁让社区就是这么设计的呢?总之,消费者组和独立消费者在使用之前都要指定 group.id。
现在问题来了,如果你的应用中同时出现了设置相同 group.id 值的消费者组程序和独立消费者程序,那么当独立消费者程序手动提交位移时,Kafka 就会立即抛出 CommitFailedException 异常,因为 Kafka 无法识别这个具有相同 group.id 的消费者实例,于是就向它返回一个错误,表明它不是消费者组内合法的成员。
虽然说这个场景很冷门,但也并非完全不会遇到。在一个大型公司中,特别是那些将 Kafka 作为全公司级消息引擎系统的公司中,每个部门或团队都可能有自己的消费者应用,谁能保证各自的 Consumer 程序配置的 group.id 没有重复呢?一旦出现不凑巧的重复,发生了上面提到的这种场景,你使用之前提到的哪种方法都不能规避该异常。令人沮丧的是,无论是刚才哪个版本的异常说明,都完全没有提及这个场景,因此,如果是这个原因引发的 CommitFailedException 异常,前面的 4 种方法全部都是无效的。
更为尴尬的是,无论是社区官网,还是网上的文章,都没有提到过这种使用场景。我个人认为,这应该算是 Kafka 的一个 bug。比起返回 CommitFailedException 异常只是表明提交位移失败,更好的做法应该是,在 Consumer 端应用程序的某个地方,能够以日志或其他方式友善地提示你错误的原因,这样你才能正确处理甚至是预防该异常。
十二、多线程开发消费者实例
Kafka Java Consumer 设计原理
在开始探究之前,我先简单阐述下 Kafka Java Consumer 为什么采用单线程的设计。
谈到 Java Consumer API,最重要的当属它的入口类 KafkaConsumer 了。我们说 KafkaConsumer 是单线程的设计,严格来说这是不准确的。因为,从 Kafka 0.10.1.0 版本开始,KafkaConsumer 就变为了双线程的设计,即用户主线程和心跳线程。
所谓用户主线程,就是你启动 Consumer 应用程序 main 方法的那个线程,而新引入的心跳线程(Heartbeat Thread)只负责定期给对应的 Broker 机器发送心跳请求,以标识消费者应用的存活性(liveness)。引入这个心跳线程还有一个目的,那就是期望它能将心跳频率与主线程调用 KafkaConsumer.poll 方法的频率分开,从而解耦真实的消息处理逻辑与消费者组成员存活性管理。
不过,虽然有心跳线程,但实际的消息获取逻辑依然是在用户主线程中完成的。因此,在消费消息的这个层面上,我们依然可以安全地认为 KafkaConsumer 是单线程的设计。
多线程方案
了解了单线程的设计原理之后,我们来具体分析一下 KafkaConsumer 这个类的使用方法,以及如何推演出对应的多线程方案。
首先,我们要明确的是,KafkaConsumer 类不是线程安全的 (thread-safe)。所有的网络 I/O 处理都是发生在用户主线程中,因此,你在使用过程中必须要确保线程安全。简单来说,就是你不能在多个线程中共享同一个 KafkaConsumer 实例,否则程序会抛出 ConcurrentModificationException 异常。
当然了,这也不是绝对的。KafkaConsumer 中有个方法是例外的,它就是wakeup(),你可以在其他线程中安全地调用KafkaConsumer.wakeup()来唤醒 Consumer。
鉴于 KafkaConsumer 不是线程安全的事实,我们能够制定两套多线程方案。
- 消费者程序启动多个线程,每个线程维护专属的 KafkaConsumer 实例,负责完整的消息获取、消息处理流程。如下图所示:
- 消费者程序使用单或多线程获取消息,同时创建多个消费线程执行消息处理逻辑。获取消息的线程可以是一个,也可以是多个,每个线程维护专属的 KafkaConsumer 实例,处理消息则交由特定的线程池来做,从而实现消息获取与消息处理的真正解耦。具体架构如下图所示:
总体来说,这两种方案都会创建多个线程,这些线程都会参与到消息的消费过程中,但各自的思路是不一样的。
我们来打个比方。比如一个完整的消费者应用程序要做的事情是 1、2、3、4、5,那么方案 1 的思路是粗粒度化的工作划分,也就是说方案 1 会创建多个线程,每个线程完整地执行 1、2、3、4、5,以实现并行处理的目标,它不会进一步分割具体的子任务;而方案 2 则更细粒度化,它会将 1、2 分割出来,用单线程(也可以是多线程)来做,对于 3、4、5,则用另外的多个线程来做。
这两种方案孰优孰劣呢?应该说是各有千秋。我总结了一下这两种方案的优缺点,我们先来看看下面这张表格。
接下来,我来具体解释一下表格中的内容。
我们先看方案 1,它的优势有 3 点。
- 实现起来简单,因为它比较符合目前我们使用 Consumer API 的习惯。我们在写代码的时候,使用多个线程并在每个线程中创建专属的 KafkaConsumer 实例就可以了。
- 多个线程之间彼此没有任何交互,省去了很多保障线程安全方面的开销。
- 由于每个线程使用专属的 KafkaConsumer 实例来执行消息获取和消息处理逻辑,因此,Kafka 主题中的每个分区都能保证只被一个线程处理,这样就很容易实现分区内的消息消费顺序。这对在乎事件先后顺序的应用场景来说,是非常重要的优势。
说完了方案 1 的优势,我们来看看这个方案的不足之处。
- 每个线程都维护自己的 KafkaConsumer 实例,必然会占用更多的系统资源,比如内存、TCP 连接等。在资源紧张的系统环境中,方案 1 的这个劣势会表现得更加明显。
- 这个方案能使用的线程数受限于 Consumer 订阅主题的总分区数。我们知道,在一个消费者组中,每个订阅分区都只能被组内的一个消费者实例所消费。假设一个消费者组订阅了 100 个分区,那么方案 1 最多只能扩展到 100 个线程,多余的线程无法分配到任何分区,只会白白消耗系统资源。当然了,这种扩展性方面的局限可以被多机架构所缓解。除了在一台机器上启用 100 个线程消费数据,我们也可以选择在 100 台机器上分别创建 1 个线程,效果是一样的。因此,如果你的机器资源很丰富,这个劣势就不足为虑了。
- 每个线程完整地执行消息获取和消息处理逻辑。一旦消息处理逻辑很重,造成消息处理速度慢,就很容易出现不必要的 Rebalance,从而引发整个消费者组的消费停滞。这个劣势你一定要注意。
下面我们来说说方案 2。
与方案 1 的粗粒度不同,方案 2 将任务切分成了消息获取和消息处理两个部分,分别由不同的线程处理它们。比起方案 1,方案 2 的最大优势就在于它的高伸缩性,就是说我们可以独立地调节消息获取的线程数,以及消息处理的线程数,而不必考虑两者之间是否相互影响。如果你的消费获取速度慢,那么增加消费获取的线程数即可;如果是消息的处理速度慢,那么增加 Worker 线程池线程数即可。
不过,这种架构也有它的缺陷。
- 它的实现难度要比方案 1 大得多,毕竟它有两组线程,你需要分别管理它们。
- 因为该方案将消息获取和消息处理分开了,也就是说获取某条消息的线程不是处理该消息的线程,因此无法保证分区内的消费顺序。举个例子,比如在某个分区中,消息 1 在消息 2 之前被保存,那么 Consumer 获取消息的顺序必然是消息 1 在前,消息 2 在后,但是,后面的 Worker 线程却有可能先处理消息 2,再处理消息 1,这就破坏了消息在分区中的顺序。还是那句话,如果你在意 Kafka 中消息的先后顺序,方案 2 的这个劣势是致命的。
- 方案 2 引入了多组线程,使得整个消息消费链路被拉长,最终导致正确位移提交会变得异常困难,结果就是可能会出现消息的重复消费。如果你在意这一点,那么我不推荐你使用方案 2。
实现代码示例
讲了这么多纯理论的东西,接下来,我们来看看实际的实现代码大概是什么样子。毕竟,就像 Linus 说的:“Talk is cheap, show me the code!”
我先跟你分享一段方案 1 的主体代码:
public class KafkaConsumerRunner implements Runnable {
private final AtomicBoolean closed = new AtomicBoolean(false);
private final KafkaConsumer consumer;
public void run() {
try {
consumer.subscribe(Arrays.asList("topic"));
while (!closed.get()) {
ConsumerRecords records =
consumer.poll(Duration.ofMillis(10000));
// 执行消息处理逻辑
}
} catch (WakeupException e) {
// Ignore exception if closing
if (!closed.get()) throw e;
} finally {
consumer.close();
}
}
// Shutdown hook which can be called from a separate thread
public void shutdown() {
closed.set(true);
consumer.wakeup();
}
这段代码创建了一个 Runnable 类,表示执行消费获取和消费处理的逻辑。每个 KafkaConsumerRunner 类都会创建一个专属的 KafkaConsumer 实例。在实际应用中,你可以创建多个 KafkaConsumerRunner 实例,并依次执行启动它们,以实现方案 1 的多线程架构。
对于方案 2 来说,核心的代码是这样的:
private final KafkaConsumer<String, String> consumer;
private ExecutorService executors;
...
private int workerNum = ...;
executors = new ThreadPoolExecutor(
workerNum, workerNum, 0L, TimeUnit.MILLISECONDS,
new ArrayBlockingQueue<>(1000),
new ThreadPoolExecutor.CallerRunsPolicy());
...
while (true) {
ConsumerRecords<String, String> records =
consumer.poll(Duration.ofSeconds(1));
for (final ConsumerRecord record : records) {
executors.submit(new Worker(record));
}
}
..
这段代码最重要的地方是:当 Consumer 的 poll 方法返回消息后,由专门的线程池来负责处理具体的消息。调用 poll 方法的主线程不负责消息处理逻辑,这样就实现了方案 2 的多线程架构。