ES学习系列4-对象的新增方法、Symbol

263 阅读23分钟

对象的新增方法

1. Object.is()

ES5 比较两个值是否相等,只有两个运算符:相等运算符(==)和严格相等运算符(===)。它们都有缺点,前者会自动转换数据类型,后者的NaN不等于自身,以及+0等于-0。

JavaScript 缺乏一种运算,在所有环境中,只要两个值是一样的,它们就应该相等。

Object.is就是部署这个算法的新方法。它用来比较两个值是否严格相等,与严格比较运算符(===)的行为基本一致。

Object.is('foo', 'foo')
// true
Object.is({}, {})
// false

不同之处只有两个:一是+0不等于-0,二是NaN等于自身。

+0 === -0 //true
NaN === NaN // false

Object.is(+0, -0) // false
Object.is(NaN, NaN) // true

2. Object.assign()

Object.assign()方法用于对象的合并,将源对象(source)的所有可枚举属性,复制到目标对象(target)。

const target = { a: 1 };

const source1 = { b: 2 };
const source2 = { c: 3 };

Object.assign(target, source1, source2);
target // {a:1, b:2, c:3}

Object.assign()方法的第一个参数是目标对象,后面的参数都是源对象。

注意,如果目标对象与源对象有同名属性,或多个源对象有同名属性,则后面的属性会覆盖前面的属性。

如果只有一个参数,Object.assign()会直接返回该参数。

const obj = {a: 1};
Object.assign(obj) === obj // true

如果该参数不是对象,则会先转成对象,然后返回。

由于undefined和null无法转成对象,所以如果它们作为参数,就会报错。

如果非对象参数出现在源对象的位置(即非首参数),那么处理规则有所不同。首先,这些参数都会转成对象,如果无法转成对象,就会跳过。这意味着,如果undefined和null不在首参数,就不会报错。

其他类型的值(即数值、字符串和布尔值)不在首参数,也不会报错。但是,除了字符串会以数组形式,拷贝入目标对象,其他值都不会产生效果。

const v1 = 'abc';
const v2 = true;
const v3 = 10;

const obj = Object.assign({}, v1, v2, v3);
console.log(obj); // { "0": "a", "1": "b", "2": "c" }

v1、v2、v3分别是字符串、布尔值和数值,结果只有字符串合入目标对象(以字符数组的形式),数值和布尔值都会被忽略。这是因为只有字符串的包装对象,会产生可枚举属性。

Object.assign()拷贝的属性是有限制的,只拷贝源对象的自身属性(不拷贝继承属性),也不拷贝不可枚举的属性(enumerable: false)。

属性名为 Symbol 值的属性,也会被Object.assign()拷贝

Object.assign({ a: 'b' }, { [Symbol('c')]: 'd' })
// { a: 'b', Symbol(c): 'd' }

(1)浅拷贝

Object.assign()方法实行的是浅拷贝,而不是深拷贝。也就是说,如果源对象某个属性的值是对象,那么目标对象拷贝得到的是这个对象的引用。

const obj1 = {a: {b: 1}};
const obj2 = Object.assign({}, obj1);

obj1.a.b = 2;
obj2.a.b // 2

Object.assign()拷贝得到的是这个对象的引用。这个对象的任何变化,都会反映到目标对象上面。

(2)同名属性的替换

对于这种嵌套的对象,一旦遇到同名属性,Object.assign()的处理方法是替换,而不是添加。

const target = { a: { b: 'c', d: 'e' } }
const source = { a: { b: 'hello' } }
Object.assign(target, source)
// { a: { b: 'hello' } }

一些函数库提供Object.assign()的定制版本(比如 Lodash 的_.defaultsDeep()方法),可以得到深拷贝的合并。

(3)数组的处理

Object.assign()可以用来处理数组,但是会把数组视为对象。

Object.assign([1, 2, 3], [4, 5])
// [4, 5, 3]

Object.assign()把数组视为属性名为 0、1、2 的对象,因此源数组的 0 号属性4覆盖了目标数组的 0 号属性1。

(4)取值函数的处理

Object.assign()只能进行值的复制,如果要复制的值是一个取值函数,那么将求值后再复制。

const source = {
  get foo() { return 1 }
};
const target = {};

Object.assign(target, source)
// { foo: 1 }

source对象的foo属性是一个取值函数,Object.assign()不会复制这个取值函数,只会拿到值以后,将这个值复制过去。

常见用途

Object.assign()方法有很多用处。

(1)为对象添加属性

class Point {
  constructor(x, y) {
    Object.assign(this, {x, y});
  }
}

通过Object.assign()方法,将x属性和y属性添加到Point类的对象实例。

(2)为对象添加方法

Object.assign(SomeClass.prototype, {
  someMethod(arg1, arg2) {
    ···
  },
  anotherMethod() {
    ···
  }
});

// 等同于下面的写法
SomeClass.prototype.someMethod = function (arg1, arg2) {
  ···
};
SomeClass.prototype.anotherMethod = function () {
  ···
};

(3)克隆对象

function clone(origin) {
  return Object.assign({}, origin);
}

采用这种方法克隆,只能克隆原始对象自身的值,不能克隆它继承的值。如果想要保持继承链,可以采用下面的代码。

function clone(origin) {
  let originProto = Object.getPrototypeOf(origin);
  return Object.assign(Object.create(originProto), origin);
}

(4)合并多个对象

将多个对象合并到某个对象。

const merge =
  (target, ...sources) => Object.assign(target, ...sources);

如果希望合并后返回一个新对象,可以改写上面函数,对一个空对象合并。

const merge =
  (...sources) => Object.assign({}, ...sources);

(5)为属性指定默认值

const DEFAULTS = {
  logLevel: 0,
  outputFormat: 'html'
};

function processContent(options) {
  options = Object.assign({}, DEFAULTS, options);
  console.log(options);
  // ...
}

DEFAULTS对象是默认值,options对象是用户提供的参数。Object.assign()方法将DEFAULTS和options合并成一个新对象,如果两者有同名属性,则options的属性值会覆盖DEFAULTS的属性值。

注意,由于存在浅拷贝的问题,DEFAULTS对象和options对象的所有属性的值,最好都是简单类型,不要指向另一个对象。否则,DEFAULTS对象的该属性很可能不起作用。

3. Object.getOwnPropertyDescriptors()

ES5 的Object.getOwnPropertyDescriptor()方法会返回某个对象属性的描述对象(descriptor)。

ES2017 引入了Object.getOwnPropertyDescriptors()方法,返回指定对象所有自身属性(非继承属性)的描述对象。

  foo: 123,
  get bar() { return 'abc' }
};

Object.getOwnPropertyDescriptors(obj)
// { foo:
//    { value: 123,
//      writable: true,
//      enumerable: true,
//      configurable: true },
//   bar:
//    { get: [Function: get bar],
//      set: undefined,
//      enumerable: true,
//      configurable: true } }

Object.getOwnPropertyDescriptors()方法返回一个对象,所有原对象的属性名都是该对象的属性名,对应的属性值就是该属性的描述对象。

该方法的实现非常容易。

function getOwnPropertyDescriptors(obj) {
  const result = {};
  for (let key of Reflect.ownKeys(obj)) {
    result[key] = Object.getOwnPropertyDescriptor(obj, key);
  }
  return result;
}

该方法的引入目的,主要是为了解决Object.assign()无法正确拷贝get属性和set属性的问题。

const source = {
  set foo(value) {
    console.log(value);
  }
};

const target1 = {};
Object.assign(target1, source);

Object.getOwnPropertyDescriptor(target1, 'foo')
// { value: undefined,
//   writable: true,
//   enumerable: true,
//   configurable: true }

这是因为Object.assign方法总是拷贝一个属性的值,而不会拷贝它背后的赋值方法或取值方法。

这时,Object.getOwnPropertyDescriptors()方法配合Object.defineProperties()方法,就可以实现正确拷贝。

const source = {
  set foo(value) {
    console.log(value);
  }
};

const target2 = {};
Object.defineProperties(target2, Object.getOwnPropertyDescriptors(source));
Object.getOwnPropertyDescriptor(target2, 'foo')
// { get: undefined,
//   set: [Function: set foo],
//   enumerable: true,
//   configurable: true }

两个对象合并的逻辑可以写成一个函数。

const shallowMerge = (target, source) => Object.defineProperties(
  target,
  Object.getOwnPropertyDescriptors(source)
);

Object.getOwnPropertyDescriptors()方法的另一个用处,是配合Object.create()方法,将对象属性克隆到一个新对象。这属于浅拷贝。

//克隆对象obj
const clone = Object.create(Object.getPrototypeOf(obj),
  Object.getOwnPropertyDescriptors(obj));

// 或者

const shallowClone = (obj) => Object.create(
  Object.getPrototypeOf(obj),
  Object.getOwnPropertyDescriptors(obj)
);

Object.getOwnPropertyDescriptors()方法可以实现一个对象继承另一个对象。以前,继承另一个对象,常常写成下面这样。

const obj = {
  __proto__: prot,
  foo: 123,
};

ES6 规定__proto__只有浏览器要部署,其他环境不用部署。如果去除__proto__,上面代码就要改成下面这样。

const obj = Object.create(prot);
obj.foo = 123;

// 或者

const obj = Object.assign(
  Object.create(prot),
  {
    foo: 123,
  }
);

有了Object.getOwnPropertyDescriptors(),我们就有了另一种写法。

const obj = Object.create(
  prot,
  Object.getOwnPropertyDescriptors({
    foo: 123,
  })
);

4. __proto__属性,Object.setPrototypeOf(),Object.getPrototypeOf()

JavaScript 语言的对象继承是通过原型链实现的。ES6 提供了更多原型对象的操作方法。

4.1 __proto__属性

用来读取或设置当前对象的原型对象(prototype)

// es5 的写法
const obj = {
  method: function() { ... }
};
obj.__proto__ = someOtherObj;

// es6 的写法
var obj = Object.create(someOtherObj);
obj.method = function() { ... };

无论从语义的角度,还是从兼容性的角度,都不要使用这个属性,而是使用下面的Object.setPrototypeOf()(写操作)、Object.getPrototypeOf()(读操作)、Object.create()(生成操作)代替。

实现上,__proto__调用的是Object.prototype.__proto__,具体实现如下。

Object.defineProperty(Object.prototype, '__proto__', {
  get() {
    let _thisObj = Object(this);
    return Object.getPrototypeOf(_thisObj);
  },
  set(proto) {
    if (this === undefined || this === null) {
      throw new TypeError();
    }
    if (!isObject(this)) {
      return undefined;
    }
    if (!isObject(proto)) {
      return undefined;
    }
    let status = Reflect.setPrototypeOf(this, proto);
    if (!status) {
      throw new TypeError();
    }
  },
});

function isObject(value) {
  return Object(value) === value;
}

如果一个对象本身部署了__proto__属性,该属性的值就是对象的原型。

Object.getPrototypeOf({ __proto__: null })
// null

4.2 Object.setPrototypeOf()

Object.setPrototypeOf方法的作用与__proto__相同,用来设置一个对象的原型对象(prototype),返回参数对象本身。它是 ES6 正式推荐的设置原型对象的方法。

// 格式
Object.setPrototypeOf(object, prototype)

// 用法
const o = Object.setPrototypeOf({}, null);

该方法等同于下面的函数。

function setPrototypeOf(obj, proto) {
  obj.__proto__ = proto;
  return obj;
}

下面是一个例子

let proto = {};
let obj = { x: 10 };
Object.setPrototypeOf(obj, proto);

proto.y = 20;
proto.z = 40;

obj.x // 10
obj.y // 20
obj.z // 40

proto对象设为obj对象的原型,所以从obj对象可以读取proto对象的属性。

如果第一个参数不是对象,会自动转为对象。但是由于返回的还是第一个参数,所以这个操作不会产生任何效果。

由于undefined和null无法转为对象,所以如果第一个参数是undefined或null,就会报错。

4.3 Object.getPrototypeOf()

该方法与Object.setPrototypeOf方法配套,用于读取一个对象的原型对象。

function Rectangle() {
  // ...
}

const rec = new Rectangle();

Object.getPrototypeOf(rec) === Rectangle.prototype
// true

Object.setPrototypeOf(rec, Object.prototype);
Object.getPrototypeOf(rec) === Rectangle.prototype
// false

如果参数不是对象,会被自动转为对象。

如果参数是undefined或null,它们无法转为对象,所以会报错。

5. Object.keys(),Object.values(),Object.entries()

5.1 Object.keys()

ES5 引入了Object.keys方法,返回一个数组,成员是参数对象自身的(不含继承的)所有可遍历(enumerable)属性的键名。

ES2017 引入了跟Object.keys配套的Object.values和Object.entries,作为遍历一个对象的补充手段,供for...of循环使用。

let {keys, values, entries} = Object;
let obj = { a: 1, b: 2, c: 3 };

for (let key of keys(obj)) {
  console.log(key); // 'a', 'b', 'c'
}

for (let value of values(obj)) {
  console.log(value); // 1, 2, 3
}

for (let [key, value] of entries(obj)) {
  console.log([key, value]); // ['a', 1], ['b', 2], ['c', 3]
}

5.2 Object.values()

Object.values方法返回一个数组,成员是参数对象自身的(不含继承的)所有可遍历(enumerable)属性的键值。

Object.values只返回对象自身的可遍历属性。

const obj = Object.create({}, {p: {value: 42}});
Object.values(obj) // []

const obj = Object.create({}, {p:
  {
    value: 42,
    enumerable: true
  }
});
Object.values(obj) // [42]

Object.values会过滤属性名为 Symbol 值的属性。

如果Object.values方法的参数是一个字符串,会返回各个字符组成的一个数组。

如果参数不是对象,Object.values会先将其转为对象。由于数值和布尔值的包装对象,都不会为实例添加非继承的属性。所以,Object.values会返回空数组。

4.3 Object.entries()

Object.entries()方法返回一个数组,成员是参数对象自身的(不含继承的)所有可遍历(enumerable)属性的键值对数组。

const obj = { foo: 'bar', baz: 42 };
Object.entries(obj)
// [ ["foo", "bar"], ["baz", 42] ]

如果原对象的属性名是一个 Symbol 值,该属性会被忽略。

Object.entries的基本用途是遍历对象的属性。

let obj = { one: 1, two: 2 };
for (let [k, v] of Object.entries(obj)) {
  console.log(
    `${JSON.stringify(k)}: ${JSON.stringify(v)}`
  );
}
// "one": 1
// "two": 2

Object.entries方法的另一个用处是,将对象转为真正的Map结构。

const obj = { foo: 'bar', baz: 42 };
const map = new Map(Object.entries(obj));
map // Map { foo: "bar", baz: 42 }

自己实现Object.entries方法,非常简单。

// Generator函数的版本
function* entries(obj) {
  for (let key of Object.keys(obj)) {
    yield [key, obj[key]];
  }
}

// 非Generator函数的版本
function entries(obj) {
  let arr = [];
  for (let key of Object.keys(obj)) {
    arr.push([key, obj[key]]);
  }
  return arr;
}

6. Object.fromEntries()

Object.fromEntries()方法是Object.entries()的逆操作,用于将一个键值对数组转为对象。

Object.fromEntries([  ['foo', 'bar'],
  ['baz', 42]
])
// { foo: "bar", baz: 42 }

该方法的主要目的,是将键值对的数据结构还原为对象,因此特别适合将 Map 结构转为对象。

// 例一
const entries = new Map([
  ['foo', 'bar'],
  ['baz', 42]
]);

Object.fromEntries(entries)
// { foo: "bar", baz: 42 }

// 例二
const map = new Map().set('foo', true).set('bar', false);
Object.fromEntries(map)
// { foo: true, bar: false }

该方法的一个用处是配合URLSearchParams对象,将查询字符串转为对象。

Object.fromEntries(new URLSearchParams('foo=bar&baz=qux'))
// { foo: "bar", baz: "qux" }

Symbol

如果有一种机制,保证每个属性的名字都是独一无二的就好了,这样就从根本上防止属性名的冲突。这就是 ES6 引入Symbol的原因。

ES6 引入了一种新的原始数据类型Symbol,表示独一无二的值。它是 JavaScript 语言的第七种数据类型,前六种是:undefined、null、布尔值(Boolean)、字符串(String)、数值(Number)、对象(Object)。

Symbol 值通过Symbol函数生成。这就是说,对象的属性名现在可以有两种类型,一种是原来就有的字符串,另一种就是新增的 Symbol 类型。凡是属性名属于 Symbol 类型,就都是独一无二的,可以保证不会与其他属性名产生冲突。

let s = Symbol();

typeof s
// "symbol"

注意,Symbol函数前不能使用new命令,否则会报错。这是因为生成的 Symbol 是一个原始类型的值,不是对象。也就是说,由于 Symbol 值不是对象,所以不能添加属性。基本上,它是一种类似于字符串的数据类型。

Symbol函数可以接受一个字符串作为参数,表示对 Symbol 实例的描述,主要是为了在控制台显示,或者转为字符串时,比较容易区分。

let s1 = Symbol('foo');
let s2 = Symbol('bar');

s1 // Symbol(foo)
s2 // Symbol(bar)

s1.toString() // "Symbol(foo)"
s2.toString() // "Symbol(bar)"

s1和s2是两个 Symbol 值。如果不加参数,它们在控制台的输出都是Symbol(),不利于区分。有了参数以后,就等于为它们加上了描述,输出的时候就能够分清,到底是哪一个值。

如果 Symbol 的参数是一个对象,就会调用该对象的toString方法,将其转为字符串,然后才生成一个 Symbol 值。

const obj = {
  toString() {
    return 'abc';
  }
};
const sym = Symbol(obj);
sym // Symbol(abc)

注意,Symbol函数的参数只是表示对当前 Symbol 值的描述,因此相同参数的Symbol函数的返回值是不相等的。

Symbol 值不能与其他类型的值进行运算,会报错。

但是,Symbol 值可以显式转为字符串。

let sym = Symbol('My symbol');

String(sym) // 'Symbol(My symbol)'
sym.toString() // 'Symbol(My symbol)'

另外,Symbol 值也可以转为布尔值,但是不能转为数值。

let sym = Symbol();
Boolean(sym) // true
!sym  // false

if (sym) {
  // ...
}

Number(sym) // TypeError
sym + 2 // TypeError

1. Symbol.prototype.description

创建 Symbol 的时候,可以添加一个描述。

但是,读取这个描述需要将 Symbol 显式转为字符串,即下面的写法。

const sym = Symbol('foo');

String(sym) // "Symbol(foo)"
sym.toString() // "Symbol(foo)"

ES2019 提供了一个实例属性description,直接返回 Symbol 的描述。

const sym = Symbol('foo');

sym.description // "foo"

2. 作为属性名的 Symbol

由于每一个 Symbol 值都是不相等的,这意味着 Symbol 值可以作为标识符,用于对象的属性名,就能保证不会出现同名的属性。这对于一个对象由多个模块构成的情况非常有用,能防止某一个键被不小心改写或覆盖。

et mySymbol = Symbol();

// 第一种写法
let a = {};
a[mySymbol] = 'Hello!';

// 第二种写法
let a = {
  [mySymbol]: 'Hello!'
};

// 第三种写法
let a = {};
Object.defineProperty(a, mySymbol, { value: 'Hello!' });

// 以上写法都得到同样结果
a[mySymbol] // "Hello!"

通过方括号结构和Object.defineProperty,将对象的属性名指定为一个 Symbol 值。

注意,Symbol 值作为对象属性名时,不能用点运算符。

同理,在对象的内部,使用 Symbol 值定义属性时,Symbol 值必须放在方括号之中。

let s = Symbol();

let obj = {
  [s]: function (arg) { ... }
};

obj[s](123);

如果s不放在方括号中,该属性的键名就是字符串s,而不是s所代表的那个 Symbol 值。

采用增强的对象写法,上面代码的obj对象可以写得更简洁一些。

let obj = {
  [s](arg) { ... }
};

Symbol 类型还可以用于定义一组常量,保证这组常量的值都是不相等的。

const log = {};

log.levels = {
  DEBUG: Symbol('debug'),
  INFO: Symbol('info'),
  WARN: Symbol('warn')
};
console.log(log.levels.DEBUG, 'debug message');
console.log(log.levels.INFO, 'info message');

常量使用 Symbol 值最大的好处,就是其他任何值都不可能有相同的值了,因此可以保证上面的switch语句会按设计的方式工作。

还有一点需要注意,Symbol 值作为属性名时,该属性还是公开属性,不是私有属性。

3. 实例:消除魔术字符串

魔术字符串指的是,在代码之中多次出现、与代码形成强耦合的某一个具体的字符串或者数值。风格良好的代码,应该尽量消除魔术字符串,改由含义清晰的变量代替。

function getArea(shape, options) {
  let area = 0;

  switch (shape) {
    case 'Triangle': // 魔术字符串
      area = .5 * options.width * options.height;
      break;
    /* ... more code ... */
  }

  return area;
}

getArea('Triangle', { width: 100, height: 100 }); // 魔术字符串

字符串Triangle就是一个魔术字符串。它多次出现,与代码形成“强耦合”,不利于将来的修改和维护。

常用的消除魔术字符串的方法,就是把它写成一个变量。

const shapeType = {
  triangle: 'Triangle'
};

function getArea(shape, options) {
  let area = 0;
  switch (shape) {
    case shapeType.triangle:
      area = .5 * options.width * options.height;
      break;
  }
  return area;
}

getArea(shapeType.triangle, { width: 100, height: 100 });

可以发现shapeType.triangle等于哪个值并不重要,只要确保不会跟其他shapeType属性的值冲突即可。因此,这里就很适合改用 Symbol 值。

const shapeType = {
  triangle: Symbol()
};

4. 属性名的遍历

Symbol 作为属性名,遍历对象的时候,该属性不会出现在for...in、for...of循环中,也不会被Object.keys()、Object.getOwnPropertyNames()、JSON.stringify()返回。

但是,它也不是私有属性,有一个Object.getOwnPropertySymbols()方法,可以获取指定对象的所有 Symbol 属性名。该方法返回一个数组,成员是当前对象的所有用作属性名的 Symbol 值。

const obj = {};
let a = Symbol('a');
let b = Symbol('b');

obj[a] = 'Hello';
obj[b] = 'World';

const objectSymbols = Object.getOwnPropertySymbols(obj);

objectSymbols
// [Symbol(a), Symbol(b)]

下面是另一个例子,Object.getOwnPropertySymbols()方法与for...in循环、Object.getOwnPropertyNames方法进行对比的例子。

const obj = {};
const foo = Symbol('foo');

obj[foo] = 'bar';

for (let i in obj) {
  console.log(i); // 无输出
}

Object.getOwnPropertyNames(obj) // []
Object.getOwnPropertySymbols(obj) // [Symbol(foo)]

使用for...in循环和Object.getOwnPropertyNames()方法都得不到 Symbol 键名,需要使用Object.getOwnPropertySymbols()方法。

另一个新的 API,Reflect.ownKeys()方法可以返回所有类型的键名,包括常规键名和 Symbol 键名。

let obj = {
  [Symbol('my_key')]: 1,
  enum: 2,
  nonEnum: 3
};

Reflect.ownKeys(obj)
//  ["enum", "nonEnum", Symbol(my_key)]

由于以 Symbol 值作为键名,不会被常规方法遍历得到。我们可以利用这个特性,为对象定义一些非私有的、但又希望只用于内部的方法。

let size = Symbol('size');

class Collection {
  constructor() {
    this[size] = 0;
  }

  add(item) {
    this[this[size]] = item;
    this[size]++;
  }

  static sizeOf(instance) {
    return instance[size];
  }
}

let x = new Collection();
Collection.sizeOf(x) // 0

x.add('foo');
Collection.sizeOf(x) // 1

Object.keys(x) // ['0']
Object.getOwnPropertyNames(x) // ['0']
Object.getOwnPropertySymbols(x) // [Symbol(size)]

对象x的size属性是一个 Symbol 值,所以Object.keys(x)、Object.getOwnPropertyNames(x)都无法获取它。这就造成了一种非私有的内部方法的效果。

5. Symbol.for(),Symbol.keyFor()

有时,我们希望重新使用同一个 Symbol 值,Symbol.for()方法可以做到这一点。它接受一个字符串作为参数,然后搜索有没有以该参数作为名称的 Symbol 值。如果有,就返回这个 Symbol 值,否则就新建一个以该字符串为名称的 Symbol 值,并将其注册到全局。

let s1 = Symbol.for('foo');
let s2 = Symbol.for('foo');

s1 === s2 // true

Symbol.for()与Symbol()这两种写法,都会生成新的 Symbol。它们的区别是,前者会被登记在全局环境中供搜索,后者不会

Symbol.for("bar") === Symbol.for("bar")
// true

Symbol("bar") === Symbol("bar")
// false

Symbol.keyFor()方法返回一个已登记的 Symbol 类型值的key。

let s1 = Symbol.for("foo");
Symbol.keyFor(s1) // "foo"

let s2 = Symbol("foo");
Symbol.keyFor(s2) // undefined

注意,Symbol.for()为 Symbol 值登记的名字,是全局环境的,不管有没有在全局环境运行。

function foo() {
  return Symbol.for('bar');
}

const x = foo();
const y = Symbol.for('bar');
console.log(x === y); // true

Symbol.for()的这个全局登记特性,可以用在不同的 iframe 或 service worker 中取到同一个值。

iframe = document.createElement('iframe');
iframe.src = String(window.location);
document.body.appendChild(iframe);

iframe.contentWindow.Symbol.for('foo') === Symbol.for('foo')
// true

iframe 窗口生成的 Symbol 值,可以在主页面得到。

6. 实例:模块的 Singleton 模式

Singleton 模式指的是调用一个类,任何时候返回的都是同一个实例。

对于 Node 来说,模块文件可以看成是一个类。怎么保证每次执行这个模块文件,返回的都是同一个实例呢?

很容易想到,可以把实例放到顶层对象global。

// mod.js
function A() {
  this.foo = 'hello';
}

if (!global._foo) {
  global._foo = new A();
}

module.exports = global._foo;

然后,加载上面的mod.js。

const a = require('./mod.js');
console.log(a.foo);

变量a任何时候加载的都是A的同一个实例。

但是,这里有一个问题,全局变量global._foo是可写的,任何文件都可以修改。

为了防止这种情况出现,我们就可以使用 Symbol。

// mod.js
const FOO_KEY = Symbol.for('foo');

function A() {
  this.foo = 'hello';
}

if (!global[FOO_KEY]) {
  global[FOO_KEY] = new A();
}

module.exports = global[FOO_KEY];

上面代码中,可以保证global[FOO_KEY]不会被无意间覆盖,但还是可以被改写。

global[Symbol.for('foo')] = { foo: 'world' };

const a = require('./mod.js');

如果键名使用Symbol方法生成,那么外部将无法引用这个值,当然也就无法改写。

// mod.js
const FOO_KEY = Symbol('foo');

// 后面代码相同 ……

上面代码将导致其他脚本都无法引用FOO_KEY。但这样也有一个问题,就是如果多次执行这个脚本,每次得到的FOO_KEY都是不一样的。虽然 Node 会将脚本的执行结果缓存,一般情况下,不会多次执行同一个脚本,但是用户可以手动清除缓存,所以也不是绝对可靠。

8. 内置的 Symbol 值

除了定义自己使用的 Symbol 值以外,ES6 还提供了 11 个内置的 Symbol 值,指向语言内部使用的方法。

8.1 Symbol.hasInstance

对象的Symbol.hasInstance属性,指向一个内部方法。当其他对象使用instanceof运算符,判断是否为该对象的实例时,会调用这个方法。比如,foo instanceof Foo在语言内部,实际调用的是FooSymbol.hasInstance

class MyClass {
  [Symbol.hasInstance](foo) {
    return foo instanceof Array;
  }
}

[1, 2, 3] instanceof new MyClass() // true

该实例的Symbol.hasInstance方法,会在进行instanceof运算时自动调用,判断左侧的运算子是否为Array的实例。

class Even {
  static [Symbol.hasInstance](obj) {
    return Number(obj) % 2 === 0;
  }
}

// 等同于
const Even = {
  [Symbol.hasInstance](obj) {
    return Number(obj) % 2 === 0;
  }
};

1 instanceof Even // false
2 instanceof Even // true
12345 instanceof Even // false

8.2 Symbol.isConcatSpreadable

对象的Symbol.isConcatSpreadable属性等于一个布尔值,表示该对象用于Array.prototype.concat()时,是否可以展开。

let arr1 = ['c', 'd'];
['a', 'b'].concat(arr1, 'e') // ['a', 'b', 'c', 'd', 'e']
arr1[Symbol.isConcatSpreadable] // undefined

let arr2 = ['c', 'd'];
arr2[Symbol.isConcatSpreadable] = false;
['a', 'b'].concat(arr2, 'e') // ['a', 'b', ['c','d'], 'e']

数组的默认行为是可以展开,Symbol.isConcatSpreadable默认等于undefined。该属性等于true时,也有展开的效果。

类似数组的对象正好相反,默认不展开。它的Symbol.isConcatSpreadable属性设为true,才可以展开。

let obj = {length: 2, 0: 'c', 1: 'd'};
['a', 'b'].concat(obj, 'e') // ['a', 'b', obj, 'e']

obj[Symbol.isConcatSpreadable] = true;
['a', 'b'].concat(obj, 'e') // ['a', 'b', 'c', 'd', 'e']

Symbol.isConcatSpreadable属性也可以定义在类里面。

class A1 extends Array {
  constructor(args) {
    super(args);
    this[Symbol.isConcatSpreadable] = true;
  }
}
class A2 extends Array {
  constructor(args) {
    super(args);
  }
  get [Symbol.isConcatSpreadable] () {
    return false;
  }
}
let a1 = new A1();
a1[0] = 3;
a1[1] = 4;
let a2 = new A2();
a2[0] = 5;
a2[1] = 6;
[1, 2].concat(a1).concat(a2)
// [1, 2, 3, 4, [5, 6]]

类A1是可展开的,类A2是不可展开的,所以使用concat时有不一样的结果。

注意,Symbol.isConcatSpreadable的位置差异,A1是定义在实例上,A2是定义在类本身,效果相同。

8.3 Symbol.species

对象的Symbol.species属性,指向一个构造函数。创建衍生对象时,会使用该属性。

class MyArray extends Array {
}

const a = new MyArray(1, 2, 3);
const b = a.map(x => x);
const c = a.filter(x => x > 1);

b instanceof MyArray // true
c instanceof MyArray // true

子类MyArray继承了父类Array,a是MyArray的实例,b和c是a的衍生对象。你可能会认为,b和c都是调用数组方法生成的,所以应该是数组(Array的实例),但实际上它们也是MyArray的实例。

Symbol.species属性就是为了解决这个问题而提供的。现在,我们可以为MyArray设置Symbol.species属性。

class MyArray extends Array {
  static get [Symbol.species]() { return Array; }
}

由于定义了Symbol.species属性,创建衍生对象时就会使用这个属性返回的函数,作为构造函数。这个例子也说明,定义Symbol.species属性要采用get取值器。默认的Symbol.species属性等同于下面的写法。

static get [Symbol.species]() {
  return this;
}

现在,再来看前面的例子。

class MyArray extends Array {
  static get [Symbol.species]() { return Array; }
}

const a = new MyArray();
const b = a.map(x => x);

b instanceof MyArray // false
b instanceof Array // true

a.map(x => x)生成的衍生对象,就不是MyArray的实例,而直接就是Array的实例。

Symbol.species的作用在于,实例对象在运行过程中,需要再次调用自身的构造函数时,会调用该属性指定的构造函数。它主要的用途是,有些类库是在基类的基础上修改的,那么子类使用继承的方法时,作者可能希望返回基类的实例,而不是子类的实例。

8.4 Symbol.match

对象的Symbol.match属性,指向一个函数。当执行str.match(myObject)时,如果该属性存在,会调用它,返回该方法的返回值。

String.prototype.match(regexp)
// 等同于
regexp[Symbol.match](this)

class MyMatcher {
  [Symbol.match](string) {
    return 'hello world'.indexOf(string);
  }
}

'e'.match(new MyMatcher()) // 1

8.5 Symbol.replace

对象的Symbol.replace属性,指向一个方法,当该对象被String.prototype.replace方法调用时,会返回该方法的返回值。

String.prototype.replace(searchValue, replaceValue)
// 等同于
searchValue[Symbol.replace](this, replaceValue)

下面是一个例子。

const x = {};
x[Symbol.replace] = (...s) => console.log(s);

'Hello'.replace(x, 'World') // ["Hello", "World"]

Symbol.replace方法会收到两个参数,第一个参数是replace方法正在作用的对象,上面例子是Hello,第二个参数是替换后的值,上面例子是World。

8.6 Symbol.search

对象的Symbol.search属性,指向一个方法,当该对象被String.prototype.search方法调用时,会返回该方法的返回值。

String.prototype.search(regexp)
// 等同于
regexp[Symbol.search](this)

class MySearch {
  constructor(value) {
    this.value = value;
  }
  [Symbol.search](string) {
    return string.indexOf(this.value);
  }
}
'foobar'.search(new MySearch('foo')) // 0

8.7 Symbol.split

对象的Symbol.split属性,指向一个方法,当该对象被String.prototype.split方法调用时,会返回该方法的返回值。

String.prototype.split(separator, limit)
// 等同于
separator[Symbol.split](this, limit)

class MySplitter {
  constructor(value) {
    this.value = value;
  }
  [Symbol.split](string) {
    let index = string.indexOf(this.value);
    if (index === -1) {
      return string;
    }
    return [
      string.substr(0, index),
      string.substr(index + this.value.length)
    ];
  }
}

'foobar'.split(new MySplitter('foo'))
// ['', 'bar']

'foobar'.split(new MySplitter('bar'))
// ['foo', '']

'foobar'.split(new MySplitter('baz'))
// 'foobar'

使用Symbol.split方法,重新定义了字符串对象的split方法的行为

8.8 Symbol.iterator

对象的Symbol.iterator属性,指向该对象的默认遍历器方法。

const myIterable = {};
myIterable[Symbol.iterator] = function* () {
  yield 1;
  yield 2;
  yield 3;
};

[...myIterable] // [1, 2, 3]

对象进行for...of循环时,会调用Symbol.iterator方法,返回该对象的默认遍历器

class Collection {
  *[Symbol.iterator]() {
    let i = 0;
    while(this[i] !== undefined) {
      yield this[i];
      ++i;
    }
  }
}

let myCollection = new Collection();
myCollection[0] = 1;
myCollection[1] = 2;

for(let value of myCollection) {
  console.log(value);
}
// 1
// 2

8.9 Symbol.toPrimitive

对象的Symbol.toPrimitive属性,指向一个方法。该对象被转为原始类型的值时,会调用这个方法,返回该对象对应的原始类型值。

Symbol.toPrimitive被调用时,会接受一个字符串参数,表示当前运算的模式,一共有三种模式。

Number:该场合需要转成数值 String:该场合需要转成字符串 Default:该场合可以转成数值,也可以转成字符串

let obj = {
  [Symbol.toPrimitive](hint) {
    switch (hint) {
      case 'number':
        return 123;
      case 'string':
        return 'str';
      case 'default':
        return 'default';
      default:
        throw new Error();
     }
   }
};

2 * obj // 246
3 + obj // '3default'
obj == 'default' // true
String(obj) // 'str'

8.10 Symbol.toStringTag

对象的Symbol.toStringTag属性,指向一个方法。在该对象上面调用Object.prototype.toString方法时,如果这个属性存在,它的返回值会出现在toString方法返回的字符串之中,表示对象的类型。也就是说,这个属性可以用来定制[object Object]或[object Array]中object后面的那个字符串。

// 例一
({[Symbol.toStringTag]: 'Foo'}.toString())
// "[object Foo]"

// 例二
class Collection {
  get [Symbol.toStringTag]() {
    return 'xxx';
  }
}
let x = new Collection();
Object.prototype.toString.call(x) // "[object xxx]"
ES6 新增内置对象的Symbol.toStringTag属性值如下。

JSON[Symbol.toStringTag]:'JSON'
Math[Symbol.toStringTag]:'Math'
Module 对象M[Symbol.toStringTag]:'Module'
ArrayBuffer.prototype[Symbol.toStringTag]:'ArrayBuffer'
DataView.prototype[Symbol.toStringTag]:'DataView'
Map.prototype[Symbol.toStringTag]:'Map'
Promise.prototype[Symbol.toStringTag]:'Promise'
Set.prototype[Symbol.toStringTag]:'Set'
%TypedArray%.prototype[Symbol.toStringTag]:'Uint8Array'WeakMap.prototype[Symbol.toStringTag]:'WeakMap'
WeakSet.prototype[Symbol.toStringTag]:'WeakSet'
%MapIteratorPrototype%[Symbol.toStringTag]:'Map Iterator'
%SetIteratorPrototype%[Symbol.toStringTag]:'Set Iterator'
%StringIteratorPrototype%[Symbol.toStringTag]:'String Iterator'
Symbol.prototype[Symbol.toStringTag]:'Symbol'
Generator.prototype[Symbol.toStringTag]:'Generator'
GeneratorFunction.prototype[Symbol.toStringTag]:'GeneratorFunction'

8.11 Symbol.unscopables

对象的Symbol.unscopables属性,指向一个对象。该对象指定了使用with关键字时,哪些属性会被with环境排除。

Array.prototype[Symbol.unscopables]
// {
//   copyWithin: true,
//   entries: true,
//   fill: true,
//   find: true,
//   findIndex: true,
//   includes: true,
//   keys: true
// }

Object.keys(Array.prototype[Symbol.unscopables])
// ['copyWithin', 'entries', 'fill', 'find', 'findIndex', 'includes', 'keys']

上面代码说明,数组有 7 个属性,会被with命令排除。

// 没有 unscopables 时
class MyClass {
  foo() { return 1; }
}

var foo = function () { return 2; };

with (MyClass.prototype) {
  foo(); // 1
}

// 有 unscopables 时
class MyClass {
  foo() { return 1; }
  get [Symbol.unscopables]() {
    return { foo: true };
  }
}

var foo = function () { return 2; };

with (MyClass.prototype) {
  foo(); // 2
}

通过指定Symbol.unscopables属性,使得with语法块不会在当前作用域寻找foo属性,即foo将指向外层作用域的变量。