Java性能调优(十五)数据库调优(2)

575 阅读27分钟

四、记一次线上SQL死锁事故

之前我参与过一个项目,在项目初期,我们是没有将读写表分离的,而是基于一个主库完成读写操作。在业务量逐渐增大的时候,我们偶尔会收到系统的异常报警信息,DBA 通知我们数据库出现了死锁异常。

按理说业务开始是比较简单的,就是新增订单、修改订单、查询订单等操作,那为什么会出现死锁呢?经过日志分析,我们发现是作为幂等性校验的一张表经常出现死锁异常。我们和 DBA 讨论之后,初步怀疑是索引导致的死锁问题。后来我们在开发环境中模拟了相关操作,果然重现了该死锁异常。

接下来我们就通过实战来重现下该业务死锁异常。首先,创建一张订单记录表,该表主要用于校验订单重复创建:

CREATE TABLE `order_record`  (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `order_no` int(11) DEFAULT NULL,
  `status` int(4) DEFAULT NULL,
  `create_date` datetime(0) DEFAULT NULL,
  PRIMARY KEY (`id`) USING BTREE,
  INDEX `idx_order_status`(`order_no`,`status`) USING BTREE
) ENGINE = InnoDB

为了能重现该问题,我们先将事务设置为手动提交。这里要注意一下,MySQL 数据库和 Oracle 提交事务不太一样,MySQL 数据库默认情况下是自动提交事务,我们可以通过以下命令行查看自动提交事务是否开启:

mysql> show variables like 'autocommit';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit    | ON    |
+---------------+-------+
1 row in set (0.01 sec)

下面就操作吧,先将 MySQL 数据库的事务提交设置为手动提交,通过以下命令行可以关闭自动提交事务:

mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)

订单在做幂等性校验时,先是通过订单号检查订单是否存在,如果不存在则新增订单记录。知道具体的逻辑之后,我们再来模拟创建产生死锁的运行 SQL 语句。首先,我们模拟新建两个订单,并按照以下顺序执行幂等性校验 SQL 语句(垂直方向代表执行的时间顺序): 此时,我们会发现两个事务已经进入死锁状态。我们可以在 information_schema 数据库中查询到具体的死锁情况,如下图所示:

看到这,你可能会想,为什么 SELECT 要加 for update 排他锁,而不是使用共享锁呢?试想下,如果是两个订单号一样的请求同时进来,就有可能出现幻读。也就是说,一开始事务 A 中的查询没有该订单号,后来事务 B 新增了一个该订单号的记录,此时事务 A 再新增一条该订单号记录,就会创建重复的订单记录。面对这种情况,我们可以使用锁间隙算法来防止幻读。

死锁是如何产生的?

行锁的具体实现算法有三种:record lock、gap lock 以及 next-key lock。record lock 是专门对索引项加锁;gap lock 是对索引项之间的间隙加锁;next-key lock 则是前面两种的组合,对索引项以其之间的间隙加锁。

只在可重复读或以上隔离级别下的特定操作才会取得 gap lock 或 next-key lock,在 Select、Update 和 Delete 时,除了基于唯一索引的查询之外,其它索引查询时都会获取 gap lock 或 next-key lock,即锁住其扫描的范围。主键索引也属于唯一索引,所以主键索引是不会使用 gap lock 或 next-key lock。

在 MySQL 中,gap lock 默认是开启的,即 innodb_locks_unsafe_for_binlog 参数值是 disable 的,且 MySQL 中默认的是 RR 事务隔离级别。

当我们执行以下查询 SQL 时,由于 order_no 列为非唯一索引,此时又是 RR 事务隔离级别,所以 SELECT 的加锁类型为 gap lock,这里的 gap 范围是 (4,+∞)。

SELECT id FROM demo.order_record where order_no = 4 for update;

执行查询 SQL 语句获取的 gap lock 并不会导致阻塞,而当我们执行以下插入 SQL 时,会在插入间隙上再次获取插入意向锁。插入意向锁其实也是一种 gap 锁,它与 gap lock 是冲突的,所以当其它事务持有该间隙的 gap lock 时,需要等待其它事务释放 gap lock 之后,才能获取到插入意向锁。

以上事务 A 和事务 B 都持有间隙 (4,+∞)的 gap 锁,而接下来的插入操作为了获取到插入意向锁,都在等待对方事务的 gap 锁释放,于是就造成了循环等待,导致死锁。

INSERT INTO demo.order_record(order_no, status, create_date) VALUES (5, 1, ‘2019-07-13 10:57:03’);

我们可以通过以下锁的兼容矩阵图,来查看锁的兼容性:

避免死锁的措施

知道了死锁问题源自哪儿,就可以找到合适的方法来避免它了。

避免死锁最直观的方法就是在两个事务相互等待时,当一个事务的等待时间超过设置的某一阈值,就对这个事务进行回滚,另一个事务就可以继续执行了。这种方法简单有效,在 InnoDB 中,参数 innodb_lock_wait_timeout 是用来设置超时时间的。

另外,我们还可以将 order_no 列设置为唯一索引列。虽然不能防止幻读,但我们可以利用它的唯一性来保证订单记录不重复创建,这种方式唯一的缺点就是当遇到重复创建订单时会抛出异常。

我们还可以使用其它的方式来代替数据库实现幂等性校验。例如,使用 Redis 以及 ZooKeeper 来实现,运行效率比数据库更佳。

其它常见的 SQL 死锁问题

这里再补充一些常见的 SQL 死锁问题,以便你遇到时也能知道其原因,从而顺利解决。

我们知道死锁的四个必要条件:互斥、占有且等待、不可强占用、循环等待。只要系统发生死锁,这些条件必然成立。所以在一些经常需要使用互斥共用一些资源,且有可能循环等待的业务场景中,要特别注意死锁问题。

接下来,我们再来了解一个出现死锁的场景。

我们讲过,InnoDB 存储引擎的主键索引为聚簇索引,其它索引为辅助索引。如果使用辅助索引来更新数据库,就需要使用聚簇索引来更新数据库字段。如果两个更新事务使用了不同的辅助索引,或一个使用了辅助索引,一个使用了聚簇索引,就都有可能导致锁资源的循环等待。由于本身两个事务是互斥,也就构成了以上死锁的四个必要条件了。

我们还是以上面的这个订单记录表来重现下聚簇索引和辅助索引更新时,循环等待锁资源导致的死锁问题: 出现死锁的步骤: 综上可知,在更新操作时,我们应该尽量使用主键来更新表字段,这样可以有效避免一些不必要的死锁发生。



解决死锁的最佳方式当然就是预防死锁的发生了,我们平时编程中,可以通过以下一些常规手段来预防死锁的发生:

  1. 在编程中尽量按照固定的顺序来处理数据库记录,假设有两个更新操作,分别更新两条相同的记录,但更新顺序不一样,有可能导致死锁;
  2. 在允许幻读和不可重复读的情况下,尽量使用 RC 事务隔离级别,可以避免 gap lock 导致的死锁问题;
  3. 更新表时,尽量使用主键更新;
  4. 避免长事务,尽量将长事务拆解,可以降低与其它事务发生冲突的概率;
  5. 设置锁等待超时参数,我们可以通过 innodb_lock_wait_timeout 设置合理的等待超时阈值,特别是在一些高并发的业务中,我们可以尽量将该值设置得小一些,避免大量事务等待,占用系统资源,造成严重的性能开销。

五、分表分库

什么时候要分表分库?

能不分表分库就不要分表分库。在单表的情况下,当业务正常时,我们使用单表即可,而当业务出现了性能瓶颈时,我们首先考虑用分区的方式来优化,如果分区优化之后仍然存在后遗症,此时我们再来考虑分表分库。

我们知道,如果在单表单库的情况下,当数据库表的数据量逐渐累积到一定的数量时(5000W 行或 100G 以上),操作数据库的性能会出现明显下降,即使我们使用索引优化或读写库分离,性能依然存在瓶颈。此时,如果每日数据增长量非常大,我们就应该考虑分表,避免单表数据量过大,造成数据库操作性能下降。

面对海量数据,除了单表的性能比较差以外,我们在单表单库的情况下,数据库连接数、磁盘 I/O 以及网络吞吐等资源都是有限的,并发能力也是有限的。所以,在一些大数据量且高并发的业务场景中,我们就需要考虑分表分库来提升数据库的并发处理能力,从而提升应用的整体性能。

如何分表分库?

通常,分表分库分为垂直切分和水平切分两种。

垂直分库是指根据业务来分库,不同的业务使用不同的数据库。例如,订单和消费券在抢购业务中都存在着高并发,如果同时使用一个库,会占用一定的连接数,所以我们可以将数据库分为订单库和促销活动库。

而垂直分表则是指根据一张表中的字段,将一张表划分为两张表,其规则就是将一些不经常使用的字段拆分到另一张表中。例如,一张订单详情表有一百多个字段,显然这张表的字段太多了,一方面不方便我们开发维护,另一方面还可能引起跨页问题。这时我们就可以拆分该表字段,解决上述两个问题。

水平分表则是将表中的某一列作为切分的条件,按照某种规则(Range 或 Hash 取模)来切分为更小的表。

水平分表只是在一个库中,如果存在连接数、I/O 读写以及网络吞吐等瓶颈,我们就需要考虑将水平切换的表分布到不同机器的库中,这就是水平分库分表了。

结合以上垂直切分和水平切分,我们一般可以将数据库分为:单库单表 - 单库多表 - 多库多表。在平时的业务开发中,我们应该优先考虑单库单表;如果数据量比较大,且热点数据比较集中、历史数据很少访问,我们可以考虑表分区;如果访问热点数据分散,基本上所有的数据都会访问到,我们可以考虑单库多表;如果并发量比较高、海量数据以及每日新增数据量巨大,我们可以考虑多库多表。

这里还需要注意一点,我刚刚强调过,能不分表分库,就不要分表分库。这是因为一旦分表,我们可能会涉及到多表的分页查询、多表的 JOIN 查询,从而增加业务的复杂度。而一旦分库了,除了跨库分页查询、跨库 JOIN 查询,还会存在跨库事务的问题。这些问题无疑会增加我们系统开发的复杂度。

分表分库之后面临的问题

然而,分表分库虽然存在着各种各样的问题,但在一些海量数据、高并发的业务中,分表分库仍是最常用的优化手段。所以,我们应该充分考虑分表分库操作后所面临的一些问题,接下我们就一起看看都有哪些应对之策。

为了更容易理解这些问题,我们将对一个订单表进行分库分表,通过详细的业务来分析这些问题。

假设我们有一张订单表以及一张订单详情表,每天的数据增长量在 60W 单,平时还会有一些促销类活动,订单增长量在千万单。为了提高系统的并发能力,我们考虑将订单表和订单详情表做分库分表。除了分表,因为用户一般查询的是最近的订单信息,所以热点数据比较集中,我们还可以考虑用表分区来优化单表查询。

通常订单的分库分表要么基于订单号 Hash 取模实现,要么根据用户 ID Hash 取模实现。订单号 Hash 取模的好处是数据能均匀分布到各个表中,而缺陷则是一个用户查询所有订单时,需要去多个表中查询。

由于订单表用户查询比较多,此时我们应该考虑使用用户 ID 字段做 Hash 取模,对订单表进行水平分表。如果需要考虑高并发时的订单处理能力,我们可以考虑基于用户 ID 字段 Hash 取模实现分库分表。这也是大部分公司对订单表分库分表的处理方式。

1. 分布式事务问题

在提交订单时,除了创建订单之外,我们还需要扣除相应的库存。而订单表和库存表由于垂直分库,位于不同的库中,这时我们需要通过分布式事务来保证提交订单时的事务完整性。

通常,我们解决分布式事务有两种通用的方式:两阶事务提交(2PC)以及补偿事务提交(TCC)。

通常有一些中间件已经帮我们封装好了这两种方式的实现,例如 Spring 实现的 JTA,目前阿里开源的分布式事务中间件 Fescar,就很好地实现了与 Dubbo 的兼容。

2. 跨节点 JOIN 查询问题

用户在查询订单时,我们往往需要通过表连接获取到商品信息,而商品信息表可能在另外一个库中,这就涉及到了跨库 JOIN 查询。

通常,我们会冗余表或冗余字段来优化跨库 JOIN 查询。对于一些基础表,例如商品信息表,我们可以在每一个订单分库中复制一张基础表,避免跨库 JOIN 查询。而对于一两个字段的查询,我们也可以将少量字段冗余在表中,从而避免 JOIN 查询,也就避免了跨库 JOIN 查询。

3. 跨节点分页查询问题

我们知道,当用户在订单列表中查询所有订单时,可以通过用户 ID 的 Hash 值来快速查询到订单信息,而运营人员在后台对订单表进行查询时,则是通过订单付款时间来进行查询的,这些数据都分布在不同的库以及表中,此时就存在一个跨节点分页查询的问题了。

通常一些中间件是通过在每个表中先查询出一定的数据,然后在缓存中排序后,获取到对应的分页数据。这种方式在越往后面的查询,就越消耗性能。

通常我们建议使用两套数据来解决跨节点分页查询问题,一套是基于分库分表的用户单条或多条查询数据,一套则是基于 Elasticsearch、Solr 存储的订单数据,主要用于运营人员根据其它字段进行分页查询。为了不影响提交订单的业务性能,我们一般使用异步消息来实现 Elasticsearch、Solr 订单数据的新增和修改。

4. 全局主键 ID 问题

在分库分表后,主键将无法使用自增长来实现了,在不同的表中我们需要统一全局主键 ID。因此,我们需要单独设计全局主键,避免不同表和库中的主键重复问题。

使用 UUID 实现全局 ID 是最方便快捷的方式,即随机生成一个 32 位 16 进制数字,这种方式可以保证一个 UUID 的唯一性,水平扩展能力以及性能都比较高。但使用 UUID 最大的缺陷就是,它是一个比较长的字符串,连续性差,如果作为主键使用,性能相对来说会比较差。

我们也可以基于 Redis 分布式锁实现一个递增的主键 ID,这种方式可以保证主键是一个整数且有一定的连续性,但分布式锁存在一定的性能消耗。

我们还可以基于 Twitter 开源的分布式 ID 生产算法——snowflake 解决全局主键 ID 问题,snowflake 是通过分别截取时间、机器标识、顺序计数的位数组成一个 long 类型的主键 ID。这种算法可以满足每秒上万个全局 ID 生成,不仅性能好,而且低延时。

5. 扩容问题

随着用户的订单量增加,根据用户 ID Hash 取模的分表中,数据量也在逐渐累积。此时,我们需要考虑动态增加表,一旦动态增加表了,就会涉及到数据迁移问题。

我们在最开始设计表数据量时,尽量使用 2 的倍数来设置表数量。当我们需要扩容时,也同样按照 2 的倍数来扩容,这种方式可以减少数据的迁移量。



在业务开发之前,我们首先要根据自己的业务需求来设计表。考虑到一开始的业务发展比较平缓,且开发周期比较短,因此在开发时间比较紧的情况下,我们尽量不要考虑分表分库。但是我们可以将分表分库的业务接口预留,提前考虑后期分表分库的切分规则,把该冗余的字段提前冗余出来,避免后期分表分库的 JOIN 查询等。

当业务发展比较迅速的时候,我们就要评估分表分库的必要性了。一旦需要分表分库,就要结合业务提前规划切分规则,尽量避免消耗性能的跨表跨库 JOIN 查询、分页查询以及跨库事务等操作。

六、电商系统表设计优化案例分析

核心业务

要懂得一个电商系统的表结构设计,我们必须先得熟悉一个电商系统中都有哪些基本核心业务。这部分的内容,只要你有过网购经历,就很好理解。

一般电商系统分为平台型和自营型电商系统。平台型电商系统是指有第三方商家入驻的电商平台,第三方商家自己开设店铺来维护商品信息、库存信息、促销活动、客服售后等,典型的代表有淘宝、天猫等。而自营型电商系统则是指没有第三方商家入驻,而是公司自己运营的电商平台,常见的有京东自营、苹果商城等。

两种类型的电商系统比较明显的区别是卖家是 C 端还是 B 端,很显然,平台型电商系统的复杂度要远远高于自营型电商系统。为了更容易理解商城的业务,我们将基于自营型电商系统来讨论表结构设计优化,这里以苹果商城为例。

一个电商系统的核心业务肯定就是销售商品了,围绕销售商品,我们可以将核心业务分为以下几个主要模块:

1. 商品模块

商品模块主要包括商品分类以及商品信息管理,商品分类则是我们常见的大分类了,有人喜欢将分类细化为多个层级,例如,第一个大类是手机、电视、配件等,配件的第二个大类又分为耳机、充电宝等。为了降低用户学习系统操作的成本,我们应该尽量将层级减少。

当我们通过了分类查询之后,就到了商品页面,一个商品 Item 包含了若干商品 SKU。商品 Item 是指一种商品,例如 IPhone9,就是一个 Item,商品 SKU 则是指具体属性的商品,例如金色 128G 内存的 IPhone9。

2. 购物车模块

购物车主要是用于用户临时存放欲购买的商品,并可以在购物车中统一下单结算。购物车一般分为离线购物车和在线购物车。离线购物车则是用户选择放入到购物车的商品只保存在本地缓存中,在线购物车则是会同步这些商品信息到服务端。

目前大部分商城都是支持两种状态的购物车,当用户没有登录商城时,主要是离线购物车在记录用户的商品信息,当用户登录商城之后,用户放入到购物车中的商品都会同步到服务端,以后在手机和电脑等不同平台以及不同时间都能查看到自己放入购物车的商品。

3. 订单模块

订单是盘活整个商城的核心功能模块,如果没有订单的产出,平台将难以维持下去。订单模块管理着用户在平台的交易记录,是用户和商家交流购买商品状态的渠道,用户可以随时更改一个订单的状态,商家则必须按照业务流程及时订单的更新状态,告知用户已购买商品的具体状态。

通常一个订单分为以下几个状态:待付款、待发货、待收货、待评价、交易完成、用户取消、仅退款、退货退款状态。一个订单的流程见下图:

4. 库存模块

这里主要记录的是商品 SKU 的具体库存信息,主要功能包括库存交易、库存管理。库存交易是指用户购买商品时实时消费库存,库存管理主要包括运营人员对商品的生产或采购入库、调拨。

一般库存信息分为商品 SKU、仓区、实时库存、锁定库存、待退货库存、活动库存。

现在大部分电商都实现了华南华北的库存分区,所以可能存在同一个商品 SKU 在华北没有库存,而在华南存在库存的情况,所以我们需要有仓区这个字段,用来区分不同地区仓库的同一个商品 SKU。

实时库存则是指商品的实时库存,锁定库存则表示用户已经提交订单到实际扣除库存或订单失效的这段时间里锁定的库存,待退货库存、活动库存则分别表表示订单退款时的库存数量以及每次活动时的库存数量。

除了这些库存信息,我们还可以为商品设置库存状态,例如虚拟库存状态、实物库存状态。如果一个商品不需要设定库存,可以任由用户购买,我们则不需要在每次用户购买商品时都去查询库存、扣除库存,只需要设定商品的库存状态为虚拟库存即可。

5. 促销活动模块

促销活动模块是指消费券、红包以及满减等促销功能,这里主要包括了活动管理和交易管理。前者主要负责管理每次发放的消费券及红包有效期、金额、满足条件、数量等信息,后者则主要负责管理用户领取红包、消费券等信息。

业务难点

了解了以上那些主要模块的具体业务之后,我们就可以更深入地去评估从业务落实到系统实现,可能存在的难点以及性能瓶颈了。

1. 不同商品类别存在差异,如何设计商品表结构?

我们知道,一个手机商品的详细信息跟一件衣服的详细信息差别很大,手机的 SKU 包括了颜色、运行内存、存储内存等,而一件衣服则包含了尺码、颜色。

如果我们需要将这些商品都存放在一张表中,要么就使用相同字段来存储不同的信息,要么就新增字段来维护各自的信息。前者会导致程序设计复杂化、表宽度大,从而减少磁盘单页存储行数,影响查询性能,且维护成本高;后者则会导致一张表中字段过多,如果有新的商品类型出现,又需要动态添加字段。

比较好的方式是通过一个公共表字段来存储一些具有共性的字段,创建单独的商品类型表,例如手机商品一个表、服饰商品一个表。但这种方式也有缺点,那就是可能会导致表非常多,查询商品信息的时候不够灵活,不好实现全文搜索。

这时候,我们可以基于一个公共表来存储商品的公共信息,同时结合搜索引擎,将商品详细信息存储到键值对数据库,例如 ElasticSearch、Solr 中。

2. 双十一购物车商品数量大增,购物车系统出现性能瓶颈怎么办?

在用户没有登录系统的情况下,我们是通过 cookie 来保存购物车的商品信息,而在用户登录系统之后,购物车的信息会保存到数据库中。

在双十一期间,大部分用户都会提前将商品加入到购物车中,在加入商品到购物车的这段操作中,由于时间比较长,操作会比较分散,所以对数据库的写入并不会造成太大的压力。但在购买时,由于多数属于抢购商品,用户对购物车的访问则会比较集中了,如果都去数据库中读取,那么数据库的压力就可想而知了。

此时我们应该考虑冷热数据方案来存储购物车的商品信息,用户一般都会首选最近放入购物车的商品,这些商品信息则是热数据,而较久之前放入购物车中的商品信息则是冷数据,我们需要提前将热数据存放在 Redis 缓存中,以便提高系统在活动期间的并发性能。例如,可以将购物车中近一个月的商品信息都存放到 Redis 中,且至少为一个分页的信息。

当在缓存中没有查找到购物车信息时,再去数据库中查询,这样就可以大大降低数据库的压力。

3. 订单表海量数据,如何设计订单表结构?

通常我们的订单表是系统数据累计最快的一张表,无论订单是否真正付款,只要订单提交了就会在订单表中创建订单。如果公司的业务发展非常迅速,那么订单表的分表分库就只是迟早的事儿了。

在没有分表之前,订单的主键 ID 都是自增的,并且关联了一些其它业务表。一旦要进行分表分库,就会存在主键 ID 与业务耦合的情况,而且分表后新自增 ID 与之前的 ID 也可能会发生冲突,后期做表升级的时候我们将会面临巨大的工作量。如果我们确定后期做表升级,建议提前使用 snowflake 来生成主键 ID。

如果订单表要实现水平分表,那我们基于哪个字段来实现分表呢?

通常我们是通过计算用户 ID 字段的 Hash 值来实现订单的分表,这种方式可以优化用户购买端对订单的操作性能。如果我们需要对订单表进行水平分库,那就还是基于用户 ID 字段来实现。

在分表分库之后,对于我们的后台订单管理系统来说,查询订单就是一个挑战了。通常后台都是根据订单状态、创建订单时间进行查询的,且需要支持分页查询以及部分字段的 JOIN 查询,如果需要在分表分库的情况下进行这些操作,无疑是一个巨大的挑战了。

对于 JOIN 查询,我们一般可以通过冗余一些不常修改的配置表来实现。例如,商品的基础信息,我们录入之后很少修改,可以在每个分库中冗余该表,如果字段信息比较少,我们可以直接在订单表中冗余这些字段。

而对于分页查询,通常我们建议冗余订单信息到大数据中。后台管理系统通过大数据来查询订单信息,用户在提交订单并且付款之后,后台将会同步这条订单到大数据。用户在 C 端修改或运营人员在后台修改订单时,会通过异步方式通知大数据更新该订单数据,这种方式可以解决分表分库后带来的分页查询问题。

4. 抢购业务,如何解决库存表的性能瓶颈?

在平时购买商品时,我们一般是直接去数据库检查、锁定库存,但如果是在促销活动期间抢购商品,我们还是直接去数据库检查、更新库存的话,面对高并发,系统无疑会产生性能瓶颈。

一般我们会将促销活动的库存更新到缓存中,通过缓存来查询商品的实时库存,并且通过分布式锁来实现库存扣减、锁定库存。

5. 促销活动也存在抢购场景,如何设计表?

促销活动中的优惠券和红包交易,很多时候跟抢购活动有些类似。

在一些大型促销活动之前,我们一般都会定时发放各种商品的优惠券和红包,用户需要点击领取才能使用。所以在一定数量的优惠券和红包放出的同时,也会存在同一时间抢购这些优惠券和红包的情况,特别是一些热销商品。

我们可以参考库存的优化设计方式,使用缓存和分布式锁来查询、更新优惠券和红包的数量,通过缓存获取数量成功以后,再通过异步方式更新数据库中优惠券和红包的数量。

这一讲,我们结合电商系统实战练习了如何进行表设计,可以总结为以下几个要点:

  1. 在字段比较复杂、易变动、不方便统一的情况下,建议使用键值对来代替关系数据库表存储;
  2. 在高并发情况下的查询操作,可以使用缓存代替数据库操作,提高并发性能;
  3. 数据量叠加比较快的表,需要考虑水平分表或分库,避免单表操作的性能瓶颈;
  4. 除此之外,我们应该通过一些优化,尽量避免比较复杂的 JOIN 查询操作,例如冗余一些字段,减少 JOIN 查询;创建一些中间表,减少 JOIN 查询。