一、Lock和Condition
Java SDK 并发包内容很丰富,包罗万象,最核心的还是其对管程的实现。因为理论上利用管程,几乎可以实现并发包里所有的工具类。
在并发编程领域,有两大核心问题:一个是互斥,即同一时刻只允许一个线程访问共享资源;另一个是同步,即线程之间如何通信、协作。这两大问题,管程都是能够解决的。Java SDK 并发包通过 Lock 和 Condition 两个接口来实现管程,其中 Lock 用于解决互斥问题,Condition 用于解决同步问题。
有了 synchronized 为什么还需要 Lock
在死锁的时候,有一个破坏不可抢占条件的解决方案,但是这个方案 synchronized 没有办法解决。原因是 synchronized 申请资源的时候,如果申请不到,线程直接进入阻塞状态了,而线程进入阻塞状态,啥都干不了,也释放不了线程已经占有的资源。但我们希望的是:
对于“不可抢占”这个条件,占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源,这样不可抢占这个条件就破坏掉了。
如果我们重新设计一把互斥锁去解决这个问题,那该怎么设计呢?我觉得有三种方案。
- 能够响应中断。synchronized 的问题是,持有锁 A 后,如果尝试获取锁 B 失败,那么线程就进入阻塞状态,一旦发生死锁,就没有任何机会来唤醒阻塞的线程。但如果阻塞状态的线程能够响应中断信号,也就是说当我们给阻塞的线程发送中断信号的时候,能够唤醒它,那它就有机会释放曾经持有的锁 A。这样就破坏了不可抢占条件了。
- 支持超时。如果线程在一段时间之内没有获取到锁,不是进入阻塞状态,而是返回一个错误,那这个线程也有机会释放曾经持有的锁。这样也能破坏不可抢占条件。
- 非阻塞地获取锁。如果尝试获取锁失败,并不进入阻塞状态,而是直接返回,那这个线程也有机会释放曾经持有的锁。这样也能破坏不可抢占条件。
这三种方案可以全面弥补 synchronized 的问题。到这里相信你应该也能理解了,这三个方案就是“重复造轮子”的主要原因,体现在 API 上,就是 Lock 接口的三个方法。详情如下:
// 支持中断的 API
void lockInterruptibly()
throws InterruptedException;
// 支持超时的 API
boolean tryLock(long time, TimeUnit unit)
throws InterruptedException;
// 支持非阻塞获取锁的 API
boolean tryLock();
如何保证可见性
Java SDK 里面 Lock 的使用,有一个经典的范例,就是try{}finally{},需要重点关注的是在 finally 里面释放锁。但是有一点需要解释一下,那就是可见性是怎么保证的。你已经知道 Java 里多线程的可见性是通过 Happens-Before 规则保证的,而 synchronized 之所以能够保证可见性,也是因为有一条 synchronized 相关的规则:synchronized 的解锁 Happens-Before 于后续对这个锁的加锁。那 Java SDK 里面 Lock 靠什么保证可见性呢?例如在下面的代码中,线程 T1 对 value 进行了 +=1 操作,那后续的线程 T2 能够看到 value 的正确结果吗?
class X {
private final Lock rtl =
new ReentrantLock();
int value;
public void addOne() {
// 获取锁
rtl.lock();
try {
value+=1;
} finally {
// 保证锁能释放
rtl.unlock();
}
}
}
答案必须是肯定的。Java SDK 里面锁的实现非常复杂,原理简单来说:它是利用了 volatile 相关的 Happens-Before 规则。Java SDK 里面的 ReentrantLock,内部持有一个 volatile 的成员变量 state,获取锁的时候,会读写 state 的值;解锁的时候,也会读写 state 的值(简化后的代码如下面所示)。也就是说,在执行 value+=1 之前,程序先读写了一次 volatile 变量 state,在执行 value+=1 之后,又读写了一次 volatile 变量 state。根据相关的 Happens-Before 规则:
- 顺序性规则:对于线程 T1,value+=1 Happens-Before 释放锁的操作 unlock();
- volatile 变量规则:由于 state = 1 会先读取 state,所以线程 T1 的 unlock() 操作 Happens-Before 线程 T2 的 lock() 操作;
- 传递性规则:线程 T1 的 value+=1 Happens-Before 线程 T2 的 lock() 操作。
class SampleLock {
volatile int state;
// 加锁
lock() {
// 省略代码无数
state = 1;
}
// 解锁
unlock() {
// 省略代码无数
state = 0;
}
}
所以说,后续线程 T2 能够看到 value 的正确结果。
什么是可重入锁
所谓可重入锁,顾名思义,指的是线程可以重复获取同一把锁。例如下面代码中,当线程 T1 执行到 ① 处时,已经获取到了锁 rtl ,当在 ① 处调用 get() 方法时,会在 ② 再次对锁 rtl 执行加锁操作。此时,如果锁 rtl 是可重入的,那么线程 T1 可以再次加锁成功;如果锁 rtl 是不可重入的,那么线程 T1 此时会被阻塞。
除了可重入锁,可能你还听说过可重入函数,可重入函数怎么理解呢?指的是线程可以重复调用?显然不是,所谓可重入函数,指的是多个线程可以同时调用该函数,每个线程都能得到正确结果;同时在一个线程内支持线程切换,无论被切换多少次,结果都是正确的。多线程可以同时执行,还支持线程切换,这意味着什么呢?线程安全啊。所以,可重入函数是线程安全的。
class X {
private final Lock rtl =
new ReentrantLock();
int value;
public int get() {
// 获取锁
rtl.lock(); ②
try {
return value;
} finally {
// 保证锁能释放
rtl.unlock();
}
}
public void addOne() {
// 获取锁
rtl.lock();
try {
value = 1 + get(); ①
} finally {
// 保证锁能释放
rtl.unlock();
}
}
}
公平锁与非公平锁
在使用 ReentrantLock 的时候,你会发现 ReentrantLock 这个类有两个构造函数,一个是无参构造函数,一个是传入 fair 参数的构造函数。fair 参数代表的是锁的公平策略,如果传入 true 就表示需要构造一个公平锁,反之则表示要构造一个非公平锁。
// 无参构造函数:默认非公平锁
public ReentrantLock() {
sync = new NonfairSync();
}
// 根据公平策略参数创建锁
public ReentrantLock(boolean fair){
sync = fair ? new FairSync()
: new NonfairSync();
}
锁都对应着一个等待队列,如果一个线程没有获得锁,就会进入等待队列,当有线程释放锁的时候,就需要从等待队列中唤醒一个等待的线程。如果是公平锁,唤醒的策略就是谁等待的时间长,就唤醒谁,很公平;如果是非公平锁,则不提供这个公平保证,有可能等待时间短的线程反而先被唤醒。
用锁的最佳实践
你已经知道,用锁虽然能解决很多并发问题,但是风险也是挺高的。可能会导致死锁,也可能影响性能。这方面有是否有相关的最佳实践呢?有,还很多。但是我觉得最值得推荐的是并发大师 Doug Lea《Java 并发编程:设计原则与模式》一书中,推荐的三个用锁的最佳实践,它们分别是:
- 永远只在更新对象的成员变量时加锁
- 永远只在访问可变的成员变量时加锁
- 永远不在调用其他对象的方法时加锁
这三条规则,前两条估计你一定会认同,最后一条你可能会觉得过于严苛。但是我还是倾向于你去遵守,因为调用其他对象的方法,实在是太不安全了,也许“其他”方法里面有线程 sleep() 的调用,也可能会有奇慢无比的 I/O 操作,这些都会严重影响性能。更可怕的是,“其他”类的方法可能也会加锁,然后双重加锁就可能导致死锁。
Condition
Condition 实现了管程模型里面的条件变量。 Java 语言内置的管程里只有一个条件变量,而 Lock&Condition 实现的管程是支持多个条件变量的,这是二者的一个重要区别。
如何利用两个条件变量快速实现阻塞队列呢?
一个阻塞队列,需要两个条件变量,一个是队列不空(空队列不允许出队),另一个是队列不满(队列已满不允许入队)。
public class BlockedQueue<T>{
final Lock lock =
new ReentrantLock();
// 条件变量:队列不满
final Condition notFull =
lock.newCondition();
// 条件变量:队列不空
final Condition notEmpty =
lock.newCondition();
// 入队
void enq(T x) {
lock.lock();
try {
while (队列已满){
// 等待队列不满
notFull.await();
}
// 省略入队操作...
// 入队后, 通知可出队
notEmpty.signal();
}finally {
lock.unlock();
}
}
// 出队
void deq(){
lock.lock();
try {
while (队列已空){
// 等待队列不空
notEmpty.await();
}
// 省略出队操作...
// 出队后,通知可入队
notFull.signal();
}finally {
lock.unlock();
}
}
}
不过,这里你需要注意,Lock 和 Condition 实现的管程,线程等待和通知需要调用 await()、signal()、signalAll(),它们的语义和 wait()、notify()、notifyAll() 是相同的。但是不一样的是,Lock&Condition 实现的管程里只能使用前面的 await()、signal()、signalAll(),而后面的 wait()、notify()、notifyAll() 只有在 synchronized 实现的管程里才能使用。如果一不小心在 Lock&Condition 实现的管程里调用了 wait()、notify()、notifyAll(),那程序可就彻底玩儿完了。
Java SDK 并发包里的 Lock 和 Condition 不过就是管程的一种实现而已,管程你已经很熟悉了,那 Lock 和 Condition 的使用自然是小菜一碟。下面我们就来看看在知名项目 Dubbo 中,Lock 和 Condition 是怎么用的。不过在开始介绍源码之前,我还先要介绍两个概念:同步和异步。
同步与异步
调用方是否需要等待结果,如果需要等待结果,就是同步;如果不需要等待结果,就是异步。 同步,是 Java 代码默认的处理方式。如果你想让你的程序支持异步,可以通过下面两种方式来实现:
- 调用方创建一个子线程,在子线程中执行方法调用,这种调用我们称为异步调用;
- 方法实现的时候,创建一个新的线程执行主要逻辑,主线程直接 return,这种方法我们一般称为异步方法。
二、Semaphore
Semaphore,现在普遍翻译为“信号量”,以前也曾被翻译成“信号灯”。
信号量是由大名鼎鼎的计算机科学家迪杰斯特拉(Dijkstra)于 1965 年提出,在这之后的 15 年,信号量一直都是并发编程领域的终结者,直到 1980 年管程被提出来,我们才有了第二选择。目前几乎所有支持并发编程的语言都支持信号量机制。
信号量模型
信号量模型还可以简单概括为:一个计数器,一个等待队列,三个方法。在信号量模型里,计数器和等待队列对外是透明的,所以只能通过信号量模型提供的三个方法来访问它们,这三个方法分别是:init()、down() 和 up()。你可以结合下图来形象化地理解。
这三个方法详细的语义具体如下所示。
- init():设置计数器的初始值。
- down():计数器的值减 1;如果此时计数器的值小于 0,则当前线程将被阻塞,否则当前线程可以继续执行。
- up():计数器的值加 1;如果此时计数器的值小于或者等于 0,则唤醒等待队列中的一个线程,并将其从等待队列中移除。
这里提到的 init()、down() 和 up() 三个方法都是原子性的,并且这个原子性是由信号量模型的实现方保证的。在 Java SDK 里面,信号量模型是由 java.util.concurrent.Semaphore 实现的,Semaphore 这个类能够保证这三个方法都是原子操作。
如果你觉得上面的描述有点绕的话,可以参考下面这个代码化的信号量模型。
class Semaphore{
// 计数器
int count;
// 等待队列
Queue queue;
// 初始化操作
Semaphore(int c){
this.count=c;
}
//
void down(){
this.count--;
if(this.count<0){
// 将当前线程插入等待队列
// 阻塞当前线程
}
}
void up(){
this.count++;
if(this.count<=0) {
// 移除等待队列中的某个线程 T
// 唤醒线程 T
}
}
}
信号量模型里面,down()、up() 这两个操作历史上最早称为 P 操作和 V 操作,所以信号量模型也被称为 PV 原语。另外,还有些人喜欢用 semWait() 和 semSignal() 来称呼它们,虽然叫法不同,但是语义都是相同的。在 Java SDK 并发包里,down() 和 up() 对应的则是 acquire() 和 release()。
如何使用信号量
在累加器的例子里面,count+=1 操作是个临界区,只允许一个线程执行,也就是说要保证互斥。那这种情况用信号量怎么控制呢?
其实很简单,就像我们用互斥锁一样,只需要在进入临界区之前执行一下 down() 操作,退出临界区之前执行一下 up() 操作就可以了。下面是 Java 代码的示例,acquire() 就是信号量里的 down() 操作,release() 就是信号量里的 up() 操作。
static int count;
// 初始化信号量
static final Semaphore s
= new Semaphore(1);
// 用信号量保证互斥
static void addOne() {
s.acquire();
try {
count+=1;
} finally {
s.release();
}
}
下面我们再来分析一下,信号量是如何保证互斥的。假设两个线程 T1 和 T2 同时访问 addOne() 方法,当它们同时调用 acquire() 的时候,由于 acquire() 是一个原子操作,所以只能有一个线程(假设 T1)把信号量里的计数器减为 0,另外一个线程(T2)则是将计数器减为 -1。对于线程 T1,信号量里面的计数器的值是 0,大于等于 0,所以线程 T1 会继续执行;对于线程 T2,信号量里面的计数器的值是 -1,小于 0,按照信号量模型里对 down() 操作的描述,线程 T2 将被阻塞。所以此时只有线程 T1 会进入临界区执行count+=1;。
当线程 T1 执行 release() 操作,也就是 up() 操作的时候,信号量里计数器的值是 -1,加 1 之后的值是 0,小于等于 0,按照信号量模型里对 up() 操作的描述,此时等待队列中的 T2 将会被唤醒。于是 T2 在 T1 执行完临界区代码之后才获得了进入临界区执行的机会,从而保证了互斥性。
快速实现一个限流器
上面的例子,我们用信号量实现了一个最简单的互斥锁功能。估计你会觉得奇怪,既然有 Java SDK 里面提供了 Lock,为啥还要提供一个 Semaphore ?其实实现一个互斥锁,仅仅是 Semaphore 的部分功能,Semaphore 还有一个功能是 Lock 不容易实现的,那就是:Semaphore 可以允许多个线程访问一个临界区。
现实中还有这种需求?有的。比较常见的需求就是我们工作中遇到的各种池化资源,例如连接池、对象池、线程池等等。其中,你可能最熟悉数据库连接池,在同一时刻,一定是允许多个线程同时使用连接池的,当然,每个连接在被释放前,是不允许其他线程使用的。
其实前不久,我在工作中也遇到了一个对象池的需求。所谓对象池呢,指的是一次性创建出 N 个对象,之后所有的线程重复利用这 N 个对象,当然对象在被释放前,也是不允许其他线程使用的。对象池,可以用 List 保存实例对象,这个很简单。但关键是限流器的设计,这里的限流,指的是不允许多于 N 个线程同时进入临界区。那如何快速实现一个这样的限流器呢?这种场景,我立刻就想到了信号量的解决方案。
信号量的计数器,在上面的例子中,我们设置成了 1,这个 1 表示只允许一个线程进入临界区,但如果我们把计数器的值设置成对象池里对象的个数 N,就能完美解决对象池的限流问题了。下面就是对象池的示例代码。
class ObjPool<T, R> {
final List<T> pool;
// 用信号量实现限流器
final Semaphore sem;
// 构造函数
ObjPool(int size, T t){
pool = new Vector<T>(){};
for(int i=0; i<size; i++){
pool.add(t);
}
sem = new Semaphore(size);
}
// 利用对象池的对象,调用 func
R exec(Function<T,R> func) {
T t = null;
sem.acquire();
try {
t = pool.remove(0);
return func.apply(t);
} finally {
pool.add(t);
sem.release();
}
}
}
// 创建对象池
ObjPool<Long, String> pool =
new ObjPool<Long, String>(10, 2);
// 通过对象池获取 t,之后执行
pool.exec(t -> {
System.out.println(t);
return t.toString();
});
我们用一个 List来保存对象实例,用 Semaphore 实现限流器。关键的代码是 ObjPool 里面的 exec() 方法,这个方法里面实现了限流的功能。在这个方法里面,我们首先调用 acquire() 方法(与之匹配的是在 finally 里面调用 release() 方法),假设对象池的大小是 10,信号量的计数器初始化为 10,那么前 10 个线程调用 acquire() 方法,都能继续执行,相当于通过了信号灯,而其他线程则会阻塞在 acquire() 方法上。对于通过信号灯的线程,我们为每个线程分配了一个对象 t(这个分配工作是通过 pool.remove(0) 实现的),分配完之后会执行一个回调函数 func,而函数的参数正是前面分配的对象 t ;执行完回调函数之后,它们就会释放对象(这个释放工作是通过 pool.add(t) 实现的),同时调用 release() 方法来更新信号量的计数器。如果此时信号量里计数器的值小于等于 0,那么说明有线程在等待,此时会自动唤醒等待的线程。
三、ReadWriteLock
前面介绍了管程和信号量这两个同步原语在 Java 语言中的实现,理论上用这两个同步原语中任何一个都可以解决所有的并发问题。那 Java SDK 并发包里为什么还有很多其他的工具类呢?原因很简单:分场景优化性能,提升易用性。
读写锁,并不是 Java 语言特有的,而是一个广为使用的通用技术,所有的读写锁都遵守以下三条基本原则:
- 允许多个线程同时读共享变量;
- 只允许一个线程写共享变量;
- 如果一个写线程正在执行写操作,此时禁止读线程读共享变量。 读写锁与互斥锁的一个重要区别就是读写锁允许多个线程同时读共享变量,而互斥锁是不允许的,这是读写锁在读多写少场景下性能优于互斥锁的关键。但读写锁的写操作是互斥的,当一个线程在写共享变量的时候,是不允许其他线程执行写操作和读操作。
快速实现一个缓存
在下面的代码中,我们声明了一个 Cache<K, V> 类,其中类型参数 K 代表缓存里 key 的类型,V 代表缓存里 value 的类型。缓存的数据保存在 Cache 类内部的 HashMap 里面,HashMap 不是线程安全的,这里我们使用读写锁 ReadWriteLock 来保证其线程安全。ReadWriteLock 是一个接口,它的实现类是 ReentrantReadWriteLock,通过名字你应该就能判断出来,它是支持可重入的。下面我们通过 rwl 创建了一把读锁和一把写锁。
Cache 这个工具类,我们提供了两个方法,一个是读缓存方法 get(),另一个是写缓存方法 put()。读缓存需要用到读锁,读锁的使用和前面我们介绍的 Lock 的使用是相同的,都是 try{}finally{}这个编程范式。写缓存则需要用到写锁,写锁的使用和读锁是类似的。这样看来,读写锁的使用还是非常简单的。
class Cache<K,V> {
final Map<K, V> m =
new HashMap<>();
final ReadWriteLock rwl =
new ReentrantReadWriteLock();
// 读锁
final Lock r = rwl.readLock();
// 写锁
final Lock w = rwl.writeLock();
// 读缓存
V get(K key) {
r.lock();
try { return m.get(key); }
finally { r.unlock(); }
}
// 写缓存
V put(String key, Data v) {
w.lock();
try { return m.put(key, v); }
finally { w.unlock(); }
}
}
如果你曾经使用过缓存的话,你应该知道使用缓存首先要解决缓存数据的初始化问题。缓存数据的初始化,可以采用一次性加载的方式,也可以使用按需加载的方式。
如果源头数据的数据量不大,就可以采用一次性加载的方式,这种方式最简单(可参考下图),只需在应用启动的时候把源头数据查询出来,依次调用类似上面示例代码中的 put() 方法就可以了。
如果源头数据量非常大,那么就需要按需加载了,按需加载也叫懒加载,指的是只有当应用查询缓存,并且数据不在缓存里的时候,才触发加载源头相关数据进缓存的操作。下面你可以结合文中示意图看看如何利用 ReadWriteLock 来实现缓存的按需加载。
实现缓存的按需加载
文中下面的这段代码实现了按需加载的功能,这里我们假设缓存的源头是数据库。需要注意的是,如果缓存中没有缓存目标对象,那么就需要从数据库中加载,然后写入缓存,写缓存需要用到写锁,所以在代码中的⑤处,我们调用了 w.lock() 来获取写锁。
另外,还需要注意的是,在获取写锁之后,我们并没有直接去查询数据库,而是在代码⑥⑦处,重新验证了一次缓存中是否存在,再次验证如果还是不存在,我们才去查询数据库并更新本地缓存。为什么我们要再次验证呢?
class Cache<K,V> {
final Map<K, V> m =
new HashMap<>();
final ReadWriteLock rwl =
new ReentrantReadWriteLock();
final Lock r = rwl.readLock();
final Lock w = rwl.writeLock();
V get(K key) {
V v = null;
// 读缓存
r.lock(); ①
try {
v = m.get(key); ②
} finally{
r.unlock(); ③
}
// 缓存中存在,返回
if(v != null) { ④
return v;
}
// 缓存中不存在,查询数据库
w.lock(); ⑤
try {
// 再次验证
// 其他线程可能已经查询过数据库
v = m.get(key); ⑥
if(v == null){ ⑦
// 查询数据库
v= 省略代码无数
m.put(key, v);
}
} finally{
w.unlock();
}
return v;
}
}
原因是在高并发的场景下,有可能会有多线程竞争写锁。假设缓存是空的,没有缓存任何东西,如果此时有三个线程 T1、T2 和 T3 同时调用 get() 方法,并且参数 key 也是相同的。那么它们会同时执行到代码⑤处,但此时只有一个线程能够获得写锁,假设是线程 T1,线程 T1 获取写锁之后查询数据库并更新缓存,最终释放写锁。此时线程 T2 和 T3 会再有一个线程能够获取写锁,假设是 T2,如果不采用再次验证的方式,此时 T2 会再次查询数据库。T2 释放写锁之后,T3 也会再次查询一次数据库。而实际上线程 T1 已经把缓存的值设置好了,T2、T3 完全没有必要再次查询数据库。所以,再次验证的方式,能够避免高并发场景下重复查询数据的问题。
读写锁的升级与降级 上面按需加载的示例代码中,在①处获取读锁,在③处释放读锁,那是否可以在②处的下面增加验证缓存并更新缓存的逻辑呢?详细的代码如下。
// 读缓存
r.lock(); ①
try {
v = m.get(key); ②
if (v == null) {
w.lock();
try {
// 再次验证并更新缓存
// 省略详细代码
} finally{
w.unlock();
}
}
} finally{
r.unlock(); ③
}
这样看上去好像是没有问题的,先是获取读锁,然后再升级为写锁,对此还有个专业的名字,叫锁的升级。可惜 ReadWriteLock 并不支持这种升级。在上面的代码示例中,读锁还没有释放,此时获取写锁,会导致写锁永久等待,最终导致相关线程都被阻塞,永远也没有机会被唤醒。锁的升级是不允许的,这个你一定要注意。
不过,虽然锁的升级是不允许的,但是锁的降级却是允许的。以下代码来源自 ReentrantReadWriteLock 的官方示例,略做了改动。你会发现在代码①处,获取读锁的时候线程还是持有写锁的,这种锁的降级是支持的。
class CachedData {
Object data;
volatile boolean cacheValid;
final ReadWriteLock rwl =
new ReentrantReadWriteLock();
// 读锁
final Lock r = rwl.readLock();
// 写锁
final Lock w = rwl.writeLock();
void processCachedData() {
// 获取读锁
r.lock();
if (!cacheValid) {
// 释放读锁,因为不允许读锁的升级
r.unlock();
// 获取写锁
w.lock();
try {
// 再次检查状态
if (!cacheValid) {
data = ...
cacheValid = true;
}
// 释放写锁前,降级为读锁
// 降级是可以的
r.lock(); ①
} finally {
// 释放写锁
w.unlock();
}
}
// 此处仍然持有读锁
try {use(data);}
finally {r.unlock();}
}
}
读写锁类似于 ReentrantLock,也支持公平模式和非公平模式。读锁和写锁都实现了 java.util.concurrent.locks.Lock 接口,所以除了支持 lock() 方法外,tryLock()、lockInterruptibly() 等方法也都是支持的。但是有一点需要注意,那就是只有写锁支持条件变量,读锁是不支持条件变量的,读锁调用 newCondition() 会抛出 UnsupportedOperationException 异常。
今天我们用 ReadWriteLock 实现了一个简单的缓存,这个缓存虽然解决了缓存的初始化问题,但是没有解决缓存数据与源头数据的同步问题,这里的数据同步指的是保证缓存数据和源头数据的一致性。解决数据同步问题的一个最简单的方案就是超时机制。所谓超时机制指的是加载进缓存的数据不是长久有效的,而是有时效的,当缓存的数据超过时效,也就是超时之后,这条数据在缓存中就失效了。而访问缓存中失效的数据,会触发缓存重新从源头把数据加载进缓存。
当然也可以在源头数据发生变化时,快速反馈给缓存,但这个就要依赖具体的场景了。例如 MySQL 作为数据源头,可以通过近实时地解析 binlog 来识别数据是否发生了变化,如果发生了变化就将最新的数据推送给缓存。另外,还有一些方案采取的是数据库和缓存的双写方案。