PS:本文主要转载自帅丙哦
什么是循环依赖?
从字面上来理解就是A依赖B的同时B也依赖了A,就像上面这样,或者C依赖与自己本身。体现到代码层次就是这个样子
@Component
public class A {
// A中注入了B
@Autowired
private B b;
}
@Component
public class B {
// B中也注入了A
@Autowired
private A a;
}
// 自己依赖自己
@Component
public class C {
// C中注入了C
@Autowired
private C c;
}
虽然体现形式不一样,但是实际上都是循环依赖的问题。
什么情况下循环依赖可以被处理?
Spring解决循环依赖是有前置条件的
- 出现循环依赖的Bean必须要是单例(singleton),如果依赖prototype则完全不会有此需求。
- 依赖注入的方式不能全是构造器注入的方式(很多博客上说,只能解决setter方法的循环依赖,这是错误的)
1. AB 均采用setter方法注入 结果OK
2. AB 均采用属性Autowired注入 结果ok
3. AB均采用构造器方法注入 出现循环依赖
4. A中注入B的方式为setter方法,B中注入A的方式为构造器
5. A中注入B的方式为构造器,B中注入A的方式为setter方法。
结论
依赖情况 | 依赖注入方式 | 循环依赖是否被解决 |
---|---|---|
AB相互依赖(循环依赖) | 均采用setter方法注入 | 是 |
AB相互依赖(循环依赖) | 均采用属性自动注入 | 是 |
AB相互依赖(循环依赖) | 均采用构造器注入 | 否 |
AB相互依赖(循环依赖) | A中注入B的方式为setter方法,B中注入A的方式为构造器 | 是 |
AB相互依赖(循环依赖) | B中注入A的方式为setter方法,A中注入B的方式为构造器 | 否 |
从上面的测试结果我们可以看到,不是只有在setter方法注入的情况下循环依赖才能被解决,即使存在构造器注入的场景下,循环依赖依然被可以被正常处理掉。
Spring循环依赖的通俗说
关于Spring bean的创建,其本质上还是一个对象的创建,既然是对象,读者朋友一定要明白一点就是,一个完整的对象包含两部分:当前对象实例化
和对象属性的实例化
。在Spring中,对象的实例化是通过反射实现的,而对象的属性则是在对象实例化之后通过一定的方式设置的。这个过程可以按照如下方式进行理解:
理解这一个点之后,对于循环依赖的理解就已经帮助一大步了,我们这里以两个类A和B为例进行讲解,如下是A和B的声明:
@Component
public class A {
private B b;
public void setB(B b) {
this.b = b;
}
}
@Component
public class B {
private A a;
public void setA(A a) {
this.a = a;
}
}
可以看到,这里A和B中各自都以对方为自己的全局属性。这里首先需要说明的一点是,Spring实例化bean是通过ApplicationContext.getBean()
方法来进行的。如果要获取的对象依赖了另一个对象,那么其首先会创建当前对象,然后通过递归
的调用ApplicationContext.getBean()
方法来获取所依赖的对象,最后将获取到的对象注入到当前对象中。
这里我们以上面的首先初始化A对象实例为例进行讲解。首先Spring尝试通过ApplicationContext.getBean()
方法获取A对象的实例,由于Spring容器中还没有A对象实例,因而其会创建一个A对象,然后发现其依赖了B对象,因而会尝试递归的通过ApplicationContext.getBean()
方法获取B对象的实例,但是Spring容器中此时也没有B对象的实例,因而其还是会先创建一个B对象的实例。读者需要注意这个时间点,此时A对象和B对象都已经创建了
,并且保存在Spring容器中了,只不过A对象的属性b和B对象的属性a都还没有设置进去。
在前面Spring创建B对象之后,Spring发现B对象依赖了属性A,因而此时还是会尝试递归的调用ApplicationContext.getBean()
方法获取A对象的实例,因为Spring中已经有一个A对象的实例,虽然只是半成品(其属性b还未初始化),但其也还是目标bean,因而会将该A对象的实例返回。此时,B对象的属性a就设置进去了,然后还是ApplicationContext.getBean()
方法递归的返回,也就是将B对象的实例返回,此时就会将该实例设置到A对象的属性b中。这个时候,注意A对象的属性b和B对象的属性a都已经设置了目标对象的实例了。读者朋友可能会比较疑惑的是,前面在为对象B设置属性a的时候,这个A类型属性还是个半成品。但是需要注意的是,这个A是一个引用
,其本质上还是最开始就实例化的A对象。而在上面这个递归过程的最后,Spring将获取到的B对象实例设置到了A对象的属性b中了,这里的A对象其实和前面设置到实例B中的半成品A对象是同一个对象,其引用地址是同一个,这里为A对象的b属性设置了值,其实也就是为那个半成品的a属性设置了值。下面我们通过一个流程图来对这个过程进行讲解:
图中getBean()
表示调用Spring
的ApplicationContext.getBean()
方法,而该方法中的参数,则表示我们要尝试获取的目标对象。图中的黑色箭头表示一开始的方法调用走向,走到最后,返回了Spring中缓存的A对象之后,表示递归调用返回了,此时使用绿色的箭头表示。从图中我们可以很清楚的看到,B对象的a属性是在第三步中注入的半成品A对象
,而A对象的b属性是在第二步中注入的成品B对象,此时半成品的A对象也就变成了成品的A对象,因为其属性已经设置完成了。
源码讲解
对于Spring处理循环依赖问题的方式,我们这里通过上面的流程图其实很容易就可以理解,需要注意的一个点就是,Spring是如何标记开始生成的A对象是一个半成品,并且是如何保存A对象的。这里的标记工作Spring是使用ApplicationContext
的属性Set<String> singletonsCurrentlyInCreation
来保存的,而半成品的A对象则是通过Map<String, ObjectFactory<?>> singletonFactories
来保存的(三级缓存),这里的ObjectFactory是一个工厂对象,可通过调用其getObject()
方法来获取目标对象。在AbstractBeanFactory.doGetBean()
方法中获取对象的方法如下:
protected <T> T doGetBean(final String name, @Nullable final Class<T> requiredType,
@Nullable final Object[] args, boolean typeCheckOnly) throws BeansException {
// 尝试通过bean名称获取目标bean对象,比如这里的A对象
Object sharedInstance = getSingleton(beanName);
//.................
// 我们这里的目标对象都是单例的
if (mbd.isSingleton()) {
// 这里就尝试创建目标对象,第二个参数传的就是一个ObjectFactory类型的对象,这里是使用Java8的lamada
// 表达式书写的,只要上面的getSingleton()方法返回值为空,则会调用这里的getSingleton()方法来创建
// 目标对象
sharedInstance = getSingleton(beanName, () -> {
try {
// 尝试创建目标对象
return createBean(beanName, mbd, args);
} catch (BeansException ex) {
throw ex;
}
});
}
return (T) bean;
}
这里的doGetBean()
方法是非常关键的一个方法(中间省略了其他代码),上面也主要有两个步骤,第一个步骤的getSingleton()方法的作用是尝试从缓存中获取目标对象,如果没有获取到,则尝试获取半成品的目标对象。
如果第一个步骤没有获取到目标对象的实例,那么就进入第二个步骤,第二个步骤的getSingleton()
方法的作用是尝试创建目标对象,并且为该对象注入其所依赖的属性。
这里其实就是主干逻辑,我们前面图中已经标明,在整个过程中会调用三次doGetBean()
方法。==第一次==调用的时候会尝试获取A对象实例,此时走的是第一个getSingleton()
246行方法,由于没有已经创建的A对象的成品或半成品,因而这里得到的是null,然后就会调用==第二个==getSingleton()318行方法,创建A对象的实例,然后递归的调用doGetBean()
方法,尝试获取B对象的实例以注入到A对象中,此时由于Spring容器中也没有B对象的成品或半成品,因而还是会走到第二个getSingleton()
方法,在该方法中创建B对象的实例,创建完成之后,尝试获取其所依赖的A的实例作为其属性,因而还是会递归的调用doGetBean()
方法,此时需要注意的是,在前面由于已经有了一个半成品的A对象的实例,因而这个时候,再尝试获取A对象的实例的时候,会走第一个getSingleton()
方法,在该方法中会得到一个半成品的A对象的实例。然后将该实例返回,并且将其注入到B对象的属性a中,此时B对象实例化完成。然后将实例化完成的B对象递归的返回,此时就会将该实例注入到A对象中,这样就得到了一个成品的A对象。我们这里可以阅读上面的第一个getSingleton()方法:
DefaultSingletonBeanRegistry getSingleton 176 行
@Nullable
protected Object getSingleton(String beanName, boolean allowEarlyReference) {
// 尝试从缓存中获取成品的目标对象,如果存在,则直接返回
Object singletonObject = this.singletonObjects.get(beanName);
// 如果缓存中不存在目标对象,则判断当前对象是否已经处于创建过程中,在前面的讲解中,第一次尝试获取A对象
// 的实例之后,就会将A对象标记为正在创建中,因而最后再尝试获取A对象的时候,这里的if判断就会为true
if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) {
synchronized (this.singletonObjects) {
singletonObject = this.earlySingletonObjects.get(beanName);
if (singletonObject == null && allowEarlyReference) {
// 这里的singletonFactories是一个Map,其key是bean的名称,而值是一个ObjectFactory类型的
// 对象,这里对于A和B而言,调用图其getObject()方法返回的就是A和B对象的实例,无论是否是半成品
ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName);
if (singletonFactory != null) {
// 获取目标对象的实例
singletonObject = singletonFactory.getObject();
this.earlySingletonObjects.put(beanName, singletonObject);
this.singletonFactories.remove(beanName);
}
}
}
}
return singletonObject;
}
这里我们会存在一个问题就是A的半成品实例是如何实例化的,然后是如何将其封装为一个ObjectFactory类型的对象,并且将其放到上面的singletonFactories属性中的。这主要是在前面的第二个getSingleton()方法中,其最终会通过其传入的第二个参数,从而调用createBean()方法,该方法的最终调用是委托给了另一个doCreateBean()方法进行的,这里面有如下一段代码:
AbstractAutowireCapableBeanFactory doCreateBean 546行
protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final @Nullable Object[] args)
throws BeanCreationException {
// 实例化当前尝试获取的bean对象,比如A对象和B对象都是在这里实例化的
BeanWrapper instanceWrapper = null;
if (mbd.isSingleton()) {
instanceWrapper = this.factoryBeanInstanceCache.remove(beanName);
}
if (instanceWrapper == null) {
instanceWrapper = createBeanInstance(beanName, mbd, args);
}
// 判断Spring是否配置了支持提前暴露目标bean,也就是是否支持提前暴露半成品的bean
boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences
&& isSingletonCurrentlyInCreation(beanName));
if (earlySingletonExposure) {
// 如果支持,这里就会将当前生成的半成品的bean放到singletonFactories中,这个singletonFactories
// 就是前面第一个getSingleton()方法中所使用到的singletonFactories属性,也就是说,这里就是
// 封装半成品的bean的地方。而这里的getEarlyBeanReference()本质上是直接将放入的第三个参数,也就是
// 目标bean直接返回
addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
}
try {
// 在初始化实例之后,这里就是判断当前bean是否依赖了其他的bean,如果依赖了,
// 就会递归的调用getBean()方法尝试获取目标bean
populateBean(beanName, mbd, instanceWrapper);
} catch (Throwable ex) {
// 省略...
}
return exposedObject;
}
到这里,Spring整个解决循环依赖问题的实现思路已经比较清楚了。对于整体过程,读者朋友只要理解两点:
- Spring是通过递归的方式获取目标bean及其所依赖的bean的;
- Spring实例化一个bean的时候,是分两步进行的,首先实例化目标bean,然后为其注入属性。
结合这两点,也就是说,Spring在实例化一个bean的时候,是首先递归的实例化其所依赖的所有bean,直到某个bean没有依赖其他bean,此时就会将该实例返回,然后反递归的将获取到的bean设置为各个上层bean的属性的。
Spring是如何解决的循环依赖?
关于循环依赖的解决方式应该要分两种情况来讨论
- 简单的循环依赖(没有AOP)
- 结合了AOP的循环依赖
简单的循环依赖(没有AOP)
我们先来分析一个最简单的例子,就是上面提到的那个例子
@Component
public class A {
// A中注入了B
@Autowired
private B b;
}
@Component
public class B {
// B中也注入了A
@Autowired
private A a;
}
通过上文我们已经知道了这种情况下的循环依赖是能够被解决的,那么具体的流程是什么呢?我们一步步分析
首先,我们要知道Spring在创建Bean的时候默认是按照自然排序来进行创建的
,所以第一步Spring会去创建A。
与此同时我们应该知道,Spring在创建Bean的过程中分为三步
- 实例化,对应方法:
org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory
中的createBeanInstance
方法 - 属性注入,对应方法:
org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory
的populateBean
方法 - 初始化,对应方法:
org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory
的initializeBean
方法
有耐心的可以跟踪源码,没耐心的你只需要知道
- 实例化,简单理解就是new了一个对象
- 属性注入,为实例化中new出来的对象填充属性
- 初始化,执行aware接口中的方法,初始化方法,完成AOP代理
基于上面的知识,我们开始解读整个循环依赖处理的过程,整个流程应该是以A的创建为起点,前文也说了,第一步就是创建A嘛!
创建A的过程实际上就是调用getBean方法,这个方法有两层含义,从缓存中获取到已经被创建的对象跟 创建一个新的Bean,我们现在分析的是第一层含义,因为这个时候缓存中还没有A嘛!
AbstractBeanFactory
中的246行getSingleton(beanName)
这个方法实际上就是到缓存中尝试去获取Bean,整个缓存分为三级
singletonObjects
,一级缓存,存储的是所有创建好了的单例BeanearlySingletonObjects
,完成实例化,但是还未进行属性注入及初始化的对象singletonFactories
,提前暴露的一个单例工厂,二级缓存中存储的就是从这个工厂中获取到的对象
尝试从缓存拿数据的函数:
protected Object getSingleton(String beanName, boolean allowEarlyReference) {
// 一级缓存,存储的是所有创建好了的单例Bean
Object singletonObject = this.singletonObjects.get(beanName);
if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) {
synchronized (this.singletonObjects) {
//二级缓存 完成实例化,但是还未进行属性注入及初始化的对象
singletonObject = this.earlySingletonObjects.get(beanName);
if (singletonObject == null && allowEarlyReference) {
//三级缓存 提前暴露的一个单例工厂,二级缓存中存储的就是从这个工厂中获取到的对象
ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName);
if (singletonFactory != null) {
singletonObject = singletonFactory.getObject();
this.earlySingletonObjects.put(beanName, singletonObject);
this.singletonFactories.remove(beanName);
}
}
}
}
return singletonObject;
}
拿不到则尝试创建 AbstractBeanFactory
中 doGetBean
320~330行
// Create bean instance.
if (mbd.isSingleton()) {
sharedInstance = getSingleton(beanName, () -> {
try {
return createBean(beanName, mbd, args);
// 重点注意 创建Bean的调用类
}
catch (BeansException ex) {
destroySingleton(beanName);
throw ex;
}
});
bean = getObjectForBeanInstance(sharedInstance, name, beanName, mbd);
}
上述代码中的 getSingleton(beanName, singletonFactory)
这个方法就是用来创建Bean的,其源码如下:
创建Bean的内部主函数:
// 函数功能:缓存中找不到对象,创建Bean,并且将创建好的添加到一级缓存。
public Object getSingleton(String beanName, ObjectFactory<?> singletonFactory) {
Assert.notNull(beanName, "Bean name must not be null");
synchronized (this.singletonObjects) {
Object singletonObject = this.singletonObjects.get(beanName);
if (singletonObject == null) {
// 省略异常处理及日志
// 在单例对象创建前先做一个标记
// 将beanName放入到singletonsCurrentlyInCreation这个集合中
// 标志着这个单例Bean正在创建
// 如果同一个单例Bean多次被创建,这里会抛出异常
beforeSingletonCreation(beanName);
// 将当前正要创建的bean记录在缓存中,这样便可以对循环依赖进行检测
// 当bean加载结束后需要移除缓存中对该bean的正在加载状态的记录。
boolean newSingleton = false;
boolean recordSuppressedExceptions = (this.suppressedExceptions == null);
if (recordSuppressedExceptions) {
this.suppressedExceptions = new LinkedHashSet<>();
}
try {
// 上游传入的lambda在这里会被执行,调用createBean方法创建一个 Bean 后返回
singletonObject = singletonFactory.getObject();
newSingleton = true;
}
// 省略catch异常处理
finally {
if (recordSuppressedExceptions) {
this.suppressedExceptions = null;
}
// 创建完成后将对应的beanName从singletonsCurrentlyInCreation移除
// https://www.cnblogs.com/warehouse/p/9382085.html
afterSingletonCreation(beanName);
}
if (newSingleton) {
// 添加到一级缓存singletonObjects中
addSingleton(beanName, singletonObject);
}
}
return singletonObject;
}
}
上面的代码我们主要抓住一点,通过createBean
方法返回的Bean最终被放到了一级缓存
,也就是单例池中。
那么到这里我们可以得出一个结论:一级缓存中存储的是已经完全创建好了的单例Bean
在AbstractAutowireCapableBeanFactory
的doCreateBean
的 577~594行是真实创建Bean
if (instanceWrapper == null) {
instanceWrapper = createBeanInstance(beanName, mbd, args);
} // 真实的创建对象方法
boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
isSingletonCurrentlyInCreation(beanName));
if (earlySingletonExposure) {
if (logger.isTraceEnabled()) {
logger.trace("Eagerly caching bean '" + beanName +
"' to allow for resolving potential circular references");
}
// 添加到三级缓存中 getEarlyBeanReference重点哦
addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
}
// Initialize the bean instance.
Object exposedObject = bean;
try {
//把创建的Bean往三级缓存添加后再开始属性注入
populateBean(beanName, mbd, instanceWrapper);
// 初始化Bean
exposedObject = initializeBean(beanName, exposedObject, mbd);
}
// 这里传入的参数也是一个lambda表达式,() -> getEarlyBeanReference(beanName, mbd, bean)
protected void addSingletonFactory(String beanName, ObjectFactory<?> singletonFactory) {
Assert.notNull(singletonFactory, "Singleton factory must not be null");
synchronized (this.singletonObjects) {
// // 添加到三级缓存中
if (!this.singletonObjects.containsKey(beanName)) {
this.singletonFactories.put(beanName, singletonFactory);
this.earlySingletonObjects.remove(beanName);
this.registeredSingletons.add(beanName);
}
}
}
这里只是添加了一个工厂,通过这个工厂(ObjectFactory)
的getObject
方法可以得到一个对象,而这个对象实际上就是通过getEarlyBeanReference
这个方法创建的。那么,什么时候会去调用这个工厂的getObject
方法呢?这个时候就要到创建B的流程了。
当A完成了实例化并添加进了三级缓存后,就要开始为A进行属性注入了,在注入时发现A依赖了B,那么这个时候Spring又会去getBean(b)
,然后反射调用setter
方法完成属性注入。
因为B需要注入A,所以在创建B的时候,又会去调用getBean(a)
,这个时候就又回到之前的流程了,但是不同的是,之前的getBean是为了创建Bean,而此时再调用getBean不是为了创建了,而是要从缓存中获取,因为之前A在实例化后已经将其放入了三级缓存singletonFactories中,所以此时getBean(a)的流程就是这样子了
至此我们明白鸟 注入到B中的A是通过getEarlyBeanReference
方法提前暴露出去的一个对象,还不是一个完整的Bean,那么getEarlyBeanReference
到底干了啥了,我们看下它的源码
protected Object getEarlyBeanReference(String beanName, RootBeanDefinition mbd, Object bean) {
Object exposedObject = bean;
if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {
for (BeanPostProcessor bp : getBeanPostProcessors()) {
if (bp instanceof SmartInstantiationAwareBeanPostProcessor) {
SmartInstantiationAwareBeanPostProcessor ibp = (SmartInstantiationAwareBeanPostProcessor) bp;
exposedObject = ibp.getEarlyBeanReference(exposedObject, beanName);
}
}
}
return exposedObject;
}
它实际上就是调用了后置处理器的getEarlyBeanReference
,而真正实现了这个方法的后置处理器只有一个,就是通过@EnableAspectJAutoProxy
注解导入的AnnotationAwareAspectJAutoProxyCreator
。也就是说如果在不考虑AOP的情况下,上面的代码等价于:
protected Object getEarlyBeanReference(String beanName, RootBeanDefinition mbd, Object bean) {
Object exposedObject = bean;
return exposedObject;
}
也就是说这个工厂啥都没干,直接将实例化阶段创建的对象返回了!所以说在不考虑AOP的情况下三级缓存有用嘛?讲道理,真的没什么用,我直接将这个对象放到二级缓存中不是一点问题都没有吗?如果你说它提高了效率,那你告诉我提高的效率在哪?
那么三级缓存到底有什么作用呢?不要急,我们先把整个流程走完,在下文结合AOP分析循环依赖的时候你就能体会到三级缓存的作用!
到这里不知道小伙伴们会不会有疑问,B中提前注入了一个没有经过初始化的A类型对象不会有问题吗?
答:不会
这个时候我们需要将整个创建A这个Bean的流程走完,如下图:
从上图中我们可以看到,虽然在创建B时会提前给B注入了一个还未初始化的A对象,但是在创建A的流程中一直使用的是注入到B中的A对象的引用,之后会根据这个引用对A进行初始化,所以这是没有问题的。
结合了AOP的循环依赖
在普通的循环依赖的情况下,三级缓存没有任何作用。三级缓存实际上跟Spring中的AOP相关,我们再来看一看getEarlyBeanReference的代码,如果在开启AOP的情况下,那么就是调用到AnnotationAwareAspectJAutoProxyCreator
的getEarlyBeanReference
方法,对应的源码如下:
public Object getEarlyBeanReference(Object bean, String beanName) {
Object cacheKey = getCacheKey(bean.getClass(), beanName);
this.earlyProxyReferences.put(cacheKey, bean);
// 如果需要代理,返回一个代理对象,不需要代理,直接返回当前传入的这个bean对象
return wrapIfNecessary(bean, beanName, cacheKey);
}
回到上面的例子,我们对A进行了AOP
代理的话,那么此时getEarlyBeanReference
将返回一个代理后的对象,而不是实例化阶段创建的对象,这样就意味着B中注入的A将是一个代理对象而不是A的实例化阶段创建后的对象。
-
在给B注入的时候为什么要注入一个代理对象? 答:当我们对A进行了AOP代理时,说明我们希望从容器中获取到的就是A代理后的对象而不是A本身,因此把A当作依赖进行注入时也要注入它的代理对象
-
明明初始化的时候是A对象,那么Spring是在哪里将代理对象放入到容器中的呢?
AbstractAutowireCapableBeanFactory类下 doCreateBean
if (earlySingletonExposure) {
// 从二级缓存中获取到代理后的Bean
Object earlySingletonReference = getSingleton(beanName, false);
if (earlySingletonReference != null) {
if (exposedObject == bean) {
// 替换成代理对象添加到一级缓存中
exposedObject = earlySingletonReference;
}
在完成初始化后,Spring又调用了一次getSingleton
方法,这一次传入的参数又不一样了,false可以理解为禁用三级缓存,前面图中已经提到过了,在为B中注入A时已经在三级缓存中的工厂取出,并从工厂中获取到了一个对象放入到了二级缓存中,所以这里的这个getSingleton
方法做的时间就是从二级缓存中获取到这个代理后的A对象。exposedObject == bean
可以认为是必定成立的,除非你非要在初始化阶段的后置处理器中替换掉正常流程中的Bean,例如增加一个后置处理器:
@Component
public class MyPostProcessor implements BeanPostProcessor {
@Override
public Object postProcessAfterInitialization(Object bean, String beanName) throws BeansException {
if (beanName.equals("a")) {
return new A();
}
return bean;
}
}
-
初始化的时候是对A对象本身进行初始化,而容器中以及注入到B中的都是代理对象,这样不会有问题吗? 答:不会,这是因为不管是
cglib
代理还是jdk
动态代理生成的代理类,内部都持有一个目标类的引用,当调用代理对象的方法时,实际会去调用目标对象的方法,A完成初始化相当于代理对象自身也完成了初始化 -
三级缓存为什么要使用工厂而不是直接使用引用?换而言之,==为什么需要这个三级缓存==,直接通过二级缓存暴露一个引用不行吗? 答:这个工厂的目的在于延迟对实例化阶段生成的对象的代理,只有真正发生循环依赖的时候,才去提前生成代理对象,否则只会创建一个工厂并将其放入到三级缓存中,但是不会去通过这个工厂去真正创建对象
我们思考一种简单的情况,就以单独创建A为例,假设AB之间现在没有依赖关系,但是A被代理了,这个时候当A完成实例化后还是会进入下面这段代码:
// A 是单例的,mbd.isSingleton()条件满足
// allowCircularReferences:这个变量代表是否允许循环依赖,默认是开启的,条件也满足
// isSingletonCurrentlyInCreation:正在在创建A,也满足
// 所以earlySingletonExposure=true
boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
isSingletonCurrentlyInCreation(beanName));
// 还是会进入到这段代码中
if (earlySingletonExposure) {
// 还是会通过三级缓存提前暴露一个工厂对象
addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
}
我们看到 即使没有循环依赖,也会将其添加到三级缓存中,而且是不得不添加到三级缓存中,因为到目前为止Spring也不能确定这个Bean有没有跟别的Bean出现循环依赖。
假设我们在这里直接使用二级缓存的话,那么意味着所有的Bean在这一步都要完成AOP代理。这样做有必要吗?
不仅没有必要,而且违背了Spring在结合AOP跟Bean的生命周期的设计!Spring结合AOP跟Bean的生命周期本身就是通过AnnotationAwareAspectJAutoProxyCreator
这个后置处理器来完成的,在这个后置处理的postProcessAfterInitialization
方法中对初始化后的Bean完成AOP代理。如果出现了循环依赖,那没有办法,只有给Bean先创建代理,但是没有出现循环依赖的情况下,设计之初就是让Bean在生命周期的最后一步完成代理而不是在实例化后就立马完成代理。
三级缓存真的提高了效率了吗?
现在我们已经知道了三级缓存的真正作用,但是这个答案可能还无法说服你,所以我们再最后总结分析一波,三级缓存真的提高了效率了吗?分为两点讨论:
-
没有进行AOP的Bean间的循环依赖 从上文分析可以看出,这种情况下三级缓存根本没用!所以不会存在什么提高了效率的说法
-
进行了AOP的Bean间的循环依赖 就以我们上的A、B为例,其中A被AOP代理,我们先分析下使用了三级缓存的情况下,A、B的创建流程 假设不使用三级缓存,直接在二级缓存中
上面两个流程的唯一区别在于为A对象创建代理的时机不同,在使用了三级缓存的情况下为A创建代理的时机是在B中需要注入A的时候,而不使用三级缓存的话在A实例化后就需要马上为A创建代理然后放入到二级缓存中去。
对于整个A、B的创建过程而言,消耗的时间是一样的。
综上,不管是哪种情况,三级缓存提高了效率这种说法都是错误的!
面试官:Spring是如何解决的循环依赖?
答:Spring通过三级缓存解决了循环依赖,其中一级缓存为单例池(singletonObjects),二级缓存为早期曝光对象earlySingletonObjects,三级缓存为早期曝光对象工厂(singletonFactories)。
当A、B两个类发生循环引用时,在A完成实例化后,就使用实例化后的对象去创建一个对象工厂,并添加到三级缓存中,如果A被AOP代理,那么通过这个工厂获取到的就是A代理后的对象,如果A没有被AOP代理,那么这个工厂获取到的就是A实例化的对象。
当A进行属性注入时,会去创建B,同时B又依赖了A,所以创建B的同时又会去调用getBean(a)来获取需要的依赖,此时的getBean(a)会从缓存中获取:
第一步,先获取到三级缓存中的工厂;
第二步,调用对象工工厂的getObject方法来获取到对应的对象,得到这个对象后将其注入到B中。紧接着B会走完它的生命周期流程,包括初始化、后置处理器等。
当B创建完后,会将B再注入到A中,此时A再完成它的整个生命周期。至此,循环依赖结束!
面试官:为什么要使用三级缓存呢?二级缓存能解决循环依赖吗?
答:如果要使用二级缓存解决循环依赖,意味着所有Bean在实例化后就要完成AOP代理,这样违背了Spring设计的原则,Spring在设计之初就是通过AnnotationAwareAspectJAutoProxyCreator
这个后置处理器来在Bean生命周期的最后一步来完成AOP代理,而不是在实例化后就立马进行AOP代理。
为什么在下表中的第四种情况的循环依赖能被解决,而第五种情况不能被解决呢?
提示:Spring在创建Bean时默认会根据自然排序进行创建,所以A会先于B进行创建