(注:以下代码分析基于android-10.0.0_r30)
一 概述
之前介绍了关于init进程的启动过程,然后在init进程启动后,会通过rc文件来启动Zygote进程
system/core/rootdir/init.rc
system/core/rootdir/init.zygote64_32.rc
frameworks/base/cmds/app_process/Android.bp
frameworks/base/cmds/app_process/app_main.cpp
frameworks/base/core/jni/AndroidRuntime.cpp
system/core/libutils/include/utils/misc.h
frameworks/base/core/java/com/android/internal/os/ZygoteInit.java
frameworks/base/core/java/com/android/internal/os/Zygote.java
frameworks/base/core/jni/com_android_internal_os_Zygote.cpp
二 rc文件的解析
2.1 init.rc
在init的最后,会解析rc文件
[init.rc]
import /init.${ro.zygote}.rc
因为存在32位和64位处理器,并且还存在64位兼容32位的情况,所以关于zygote.rc,具体是有4个文件
- init.zygote32.rc
- init.zygote32_64.rc
- init.zygote64.rc
- init.zygote64_32.rc
当然,一般我们使用得比较多的还是init.zygote64_32.rc
2.2 init.zygote64_32.rc
[init.zygote64_32.rc]
service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --start-system-server --socket-name=zygote
class main
priority -20
user root
group root readproc reserved_disk
socket zygote stream 660 root system
socket usap_pool_primary stream 660 root system
onrestart write /sys/android_power/request_state wake
onrestart write /sys/power/state on
onrestart restart audioserver
onrestart restart cameraserver
onrestart restart media
onrestart restart netd
onrestart restart wificond
writepid /dev/cpuset/foreground/tasks
service zygote_secondary /system/bin/app_process32 -Xzygote /system/bin --zygote --socket-name=zygote_secondary --enable-lazy-preload
class main
priority -20
user root
group root readproc reserved_disk
socket zygote_secondary stream 660 root system
socket usap_pool_secondary stream 660 root system
onrestart restart zygote
writepid /dev/cpuset/foreground/tasks
关于AIL上篇有做过一个简单的介绍,具体的可以查看官方文档
这里的意思就是,启动一个zygote服务,执行文件是/system/bin/app_process64,参数是--zygote --start-system-server --socket-name=zygote
2.3 Android.bp
我们都知道,zygote的入口函数是app_main.cpp中的main,那么,app_process64又是怎么和app_main.cpp关联起来的呢,这里就要说到Android.bp了
在早期的Android版本(7.0之前),是使用的Android.mk来作为配置信息,进行源码的编译,但是从android 7.0开始,就引入了Android.bp来取代之前的Android.mk
[Android.bp]
cc_binary {
name: "app_process",
srcs: ["app_main.cpp"],
multilib: {
lib32: {
// TODO(b/142944043): Remove version script when libsigchain is a DSO.
version_script: "version-script32.txt",
suffix: "32",
},
lib64: {
// TODO(b/142944043): Remove version script when libsigchain is a DSO.
version_script: "version-script64.txt",
suffix: "64",
},
},
...
}
所以,之前的app_process,最终都会执行到app_main.cpp这个类
三 app_main.cpp
3.1 main函数
从之前解析的rc文件,会执行到对应app_main.cpp中的main方法,并且还会传递对应的参数:--zygote --start-system-server --socket-name=zygote
关于main函数这部分,虽然比较长,但是里面的逻辑还是比较简单的,就是一些参数的解析,然后调用到对应的ZygoteInit.java对应的Java世界
[app_main.cpp]
//参数:--zygote --start-system-server --socket-name=zygote
int main(int argc, char* const argv[])
{
//打印参数
if (!LOG_NDEBUG) {
String8 argv_String;
for (int i = 0; i < argc; ++i) {
argv_String.append("\"");
argv_String.append(argv[i]);
argv_String.append("\" ");
}
ALOGV("app_process main with argv: %s", argv_String.string());
}
//创建一个AppRuntime对象
AppRuntime runtime(argv[0], computeArgBlockSize(argc, argv));
// Process command line arguments
// ignore argv[0]
argc--;
argv++;
const char* spaced_commands[] = { "-cp", "-classpath" };
// Allow "spaced commands" to be succeeded by exactly 1 argument (regardless of -s).
bool known_command = false;
int i;
for (i = 0; i < argc; i++) {
if (known_command == true) {
runtime.addOption(strdup(argv[i]));
// The static analyzer gets upset that we don't ever free the above
// string. Since the allocation is from main, leaking it doesn't seem
// problematic. NOLINTNEXTLINE
ALOGV("app_process main add known option '%s'", argv[i]);
known_command = false;
continue;
}
for (int j = 0;
j < static_cast<int>(sizeof(spaced_commands) / sizeof(spaced_commands[0]));
++j) {
//比较参数中是否有spaced_commands中的参数
if (strcmp(argv[i], spaced_commands[j]) == 0) {
known_command = true;
ALOGV("app_process main found known command '%s'", argv[i]);
}
}
//如果参数是以-开头,就跳出循环,这里会执行这段逻辑
if (argv[i][0] != '-') {
break;
}
if (argv[i][1] == '-' && argv[i][2] == 0) {
++i; // Skip --.
break;
}
runtime.addOption(strdup(argv[i]));
// The static analyzer gets upset that we don't ever free the above
// string. Since the allocation is from main, leaking it doesn't seem
// problematic. NOLINTNEXTLINE
ALOGV("app_process main add option '%s'", argv[i]);
}
// 开始正式启动
bool zygote = false;
bool startSystemServer = false;
bool application = false;
String8 niceName;
String8 className;
//开始处理参数:--zygote --start-system-server --socket-name=zygote
++i; // Skip unused "parent dir" argument.
while (i < argc) {
const char* arg = argv[i++];
if (strcmp(arg, "--zygote") == 0) {
zygote = true;
niceName = ZYGOTE_NICE_NAME;
} else if (strcmp(arg, "--start-system-server") == 0) {
startSystemServer = true;
} else if (strcmp(arg, "--application") == 0) {
application = true;
} else if (strncmp(arg, "--nice-name=", 12) == 0) {
niceName.setTo(arg + 12);
} else if (strncmp(arg, "--", 2) != 0) {
//如果不是zygote,startSystemServer,application,那么就会走这段逻辑
className.setTo(arg);
break;
} else {
--i;
break;
}
}
Vector<String8> args;
if (!className.isEmpty()) {
// className 不为空,说明不是启动zygote
args.add(application ? String8("application") : String8("tool"));
runtime.setClassNameAndArgs(className, argc - i, argv + i);
if (!LOG_NDEBUG) {
String8 restOfArgs;
char* const* argv_new = argv + i;
int argc_new = argc - i;
for (int k = 0; k < argc_new; ++k) {
restOfArgs.append("\"");
restOfArgs.append(argv_new[k]);
restOfArgs.append("\" ");
}
ALOGV("Class name = %s, args = %s", className.string(), restOfArgs.string());
}
} else {
// 说明是要启动zygote
//创建Dalvik缓存
maybeCreateDalvikCache();
//如果要启动SystemServer,就添加相关参数
if (startSystemServer) {
args.add(String8("start-system-server"));
}
//设置对应的ABI信息
char prop[PROP_VALUE_MAX];
if (property_get(ABI_LIST_PROPERTY, prop, NULL) == 0) {
LOG_ALWAYS_FATAL("app_process: Unable to determine ABI list from property %s.",
ABI_LIST_PROPERTY);
return 11;
}
String8 abiFlag("--abi-list=");
abiFlag.append(prop);
args.add(abiFlag);
// In zygote mode, pass all remaining arguments to the zygote
// main() method.
for (; i < argc; ++i) {
args.add(String8(argv[i]));
}
}
//设置进程名ZYGOTE_NICE_NAME
if (!niceName.isEmpty()) {
runtime.setArgv0(niceName.string(), true /* setProcName */);
}
//如果是zygote
if (zygote) {
runtime.start("com.android.internal.os.ZygoteInit", args, zygote);
} else if (className) {
//如果不是zygote
runtime.start("com.android.internal.os.RuntimeInit", args, zygote);
} else {
fprintf(stderr, "Error: no class name or --zygote supplied.\n");
app_usage();
LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied.");
}
}
那么,这里是怎么从native世界调用到Java世界的呢,这里就需要说一说AppRuntime这个类了
3.2 AndroidRuntime
AppRuntime这个类,它继承自AndroidRuntime,它是定义在app_main.cpp函数中的一个类,在执行start方法时,首先就会调用到AndroidRuntime中的start方法
关于这个start方法,主要做了这么几件事情
- 启动Java虚拟机
- 注册jni方法
- 调用ZygoteInit转入Java类中
[AndroidRuntime.cpp]
//className是com.android.internal.os.ZygoteInit,
void AndroidRuntime::start(const char* className, const Vector<String8>& options, bool zygote)
{
static const String8 startSystemServer("start-system-server");
// Whether this is the primary zygote, meaning the zygote which will fork system server.
bool primary_zygote = false;
/*
* 'startSystemServer == true' means runtime is obsolete and not run from
* init.rc anymore, so we print out the boot start event here.
*/
for (size_t i = 0; i < options.size(); ++i) {
if (options[i] == startSystemServer) {
primary_zygote = true;
/* track our progress through the boot sequence */
const int LOG_BOOT_PROGRESS_START = 3000;
LOG_EVENT_LONG(LOG_BOOT_PROGRESS_START, ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
}
}
//获取环境变量ANDROID_ROOT
const char* rootDir = getenv("ANDROID_ROOT");
if (rootDir == NULL) {
//如果环境变量中没有ANDROID_ROOT,就添加一个
rootDir = "/system";
if (!hasDir("/system")) {
LOG_FATAL("No root directory specified, and /system does not exist.");
return;
}
setenv("ANDROID_ROOT", rootDir, 1);
}
//一些日志输出信息
const char* artRootDir = getenv("ANDROID_ART_ROOT");
if (artRootDir == NULL) {
LOG_FATAL("No ART directory specified with ANDROID_ART_ROOT environment variable.");
return;
}
const char* i18nRootDir = getenv("ANDROID_I18N_ROOT");
if (i18nRootDir == NULL) {
LOG_FATAL("No runtime directory specified with ANDROID_I18N_ROOT environment variable.");
return;
}
const char* tzdataRootDir = getenv("ANDROID_TZDATA_ROOT");
if (tzdataRootDir == NULL) {
LOG_FATAL("No tz data directory specified with ANDROID_TZDATA_ROOT environment variable.");
return;
}
//const char* kernelHack = getenv("LD_ASSUME_KERNEL");
//ALOGD("Found LD_ASSUME_KERNEL='%s'\n", kernelHack);
//开始启动Java虚拟机
JniInvocation jni_invocation;
jni_invocation.Init(NULL);
//创建一个JNIEnv指针,并启动Java虚拟机
JNIEnv* env;
if (startVm(&mJavaVM, &env, zygote, primary_zygote) != 0) {
return;
}
//调用虚拟机创建后的回调
onVmCreated(env);
//注册jni函数
if (startReg(env) < 0) {
ALOGE("Unable to register all android natives\n");
return;
}
//创建对应的Java参数,把C层的参数转成Java层的参数
jclass stringClass;
jobjectArray strArray;
jstring classNameStr;
stringClass = env->FindClass("java/lang/String");
assert(stringClass != NULL);
strArray = env->NewObjectArray(options.size() + 1, stringClass, NULL);
assert(strArray != NULL);
classNameStr = env->NewStringUTF(className);
assert(classNameStr != NULL);
env->SetObjectArrayElement(strArray, 0, classNameStr);
for (size_t i = 0; i < options.size(); ++i) {
jstring optionsStr = env->NewStringUTF(options.itemAt(i).string());
assert(optionsStr != NULL);
env->SetObjectArrayElement(strArray, i + 1, optionsStr);
}
//开始jni调用,通过反射调用到对应的Java类ZygoteInit
char* slashClassName = toSlashClassName(className != NULL ? className : "");
jclass startClass = env->FindClass(slashClassName);
if (startClass == NULL) {
ALOGE("JavaVM unable to locate class '%s'\n", slashClassName);
/* keep going */
} else {
jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
"([Ljava/lang/String;)V");
if (startMeth == NULL) {
ALOGE("JavaVM unable to find main() in '%s'\n", className);
/* keep going */
} else {
env->CallStaticVoidMethod(startClass, startMeth, strArray);
#if 0
if (env->ExceptionCheck())
threadExitUncaughtException(env);
#endif
}
}
free(slashClassName);
ALOGD("Shutting down VM\n");
if (mJavaVM->DetachCurrentThread() != JNI_OK)
ALOGW("Warning: unable to detach main thread\n");
if (mJavaVM->DestroyJavaVM() != 0)
ALOGW("Warning: VM did not shut down cleanly\n");
}
3.3 jni函数的注册
刚才的main函数中,提到了startReg(env)是注册jni函数,那么它的具体注册逻辑是怎么样的呢
[AndroidRuntime.cpp]
/*static*/ int AndroidRuntime::startReg(JNIEnv* env)
{
ATRACE_NAME("RegisterAndroidNatives");
androidSetCreateThreadFunc((android_create_thread_fn) javaCreateThreadEtc);
ALOGV("--- registering native functions ---\n");
env->PushLocalFrame(200);
//这里就是jni函数的注册逻辑
if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) {
env->PopLocalFrame(NULL);
return -1;
}
env->PopLocalFrame(NULL);
return 0;
}
static int register_jni_procs(const RegJNIRec array[], size_t count, JNIEnv* env)
{
for (size_t i = 0; i < count; i++) {
if (array[i].mProc(env) < 0) {
#ifndef NDEBUG
ALOGD("----------!!! %s failed to load\n", array[i].mName);
#endif
return -1;
}
}
return 0;
}
[misc.h]
#ifndef NELEM
# define NELEM(x) ((int) (sizeof(x) / sizeof((x)[0])))
#endif
这里的register_jni_procs(gRegJNI, NELEM(gRegJNI), env) 就是注册的逻辑,它传递了两个参数,一个就是gRegJNI,它是一个数组,另一个就是这个数组的长度
关于gRegJNI,它的具体定义如下
[AndroidRuntime.cpp]
static const RegJNIRec gRegJNI[] = {
REG_JNI(register_com_android_internal_os_RuntimeInit),
REG_JNI(register_com_android_internal_os_ZygoteInit_nativeZygoteInit),
REG_JNI(register_android_os_SystemClock),
REG_JNI(register_android_util_EventLog),
...
}
int register_com_android_internal_os_RuntimeInit(JNIEnv* env)
{
const JNINativeMethod methods[] = {
{"nativeFinishInit", "()V",
(void*)com_android_internal_os_RuntimeInit_nativeFinishInit},
{"nativeSetExitWithoutCleanup", "(Z)V",
(void*)com_android_internal_os_RuntimeInit_nativeSetExitWithoutCleanup},
};
//进程动态注册
return jniRegisterNativeMethods(env, "com/android/internal/os/RuntimeInit",
methods, NELEM(methods));
}
#ifdef NDEBUG
#define REG_JNI(name) { name }
struct RegJNIRec {
int (*mProc)(JNIEnv*);
};
#else
#define REG_JNI(name) { name, #name }
struct RegJNIRec {
int (*mProc)(JNIEnv*);
const char* mName;
};
#endif
因为这个数组非常长,所以这里只截取片段,从这里我们可以看出,我们register_jni_procs传递进去的其实是一个结构体RegJNIRec的数组和它的长度,这个结构体里面有一个函数指针,register_jni_procs在处理这个结构体的时候,也是不断的调用结构体中的函数,这个函数的末尾就是我们jni中常用的动态注册
四 ZygoteInit.java
经过了之前native层一系列的逻辑,终于到了Java世界的相关逻辑了,首先入口是之前传递的参数ZygoteInit类中的main函数
[ZygoteInit.java]
//
public static void main(String argv[]) {
//定义ZygoteServer,后面会创建
ZygoteServer zygoteServer = null;
// 启用NoThread,确保没有其他线程运行,因为Zygote必须保证单线程
ZygoteHooks.startZygoteNoThreadCreation();
// 设置Zygote的pid
try {
Os.setpgid(0, 0);
} catch (ErrnoException ex) {
throw new RuntimeException("Failed to setpgid(0,0)", ex);
}
//定义一个Runnable
Runnable caller;
try {
// Report Zygote start time to tron unless it is a runtime restart
if (!"1".equals(SystemProperties.get("sys.boot_completed"))) {
MetricsLogger.histogram(null, "boot_zygote_init",
(int) SystemClock.elapsedRealtime());
}
String bootTimeTag = Process.is64Bit() ? "Zygote64Timing" : "Zygote32Timing";
TimingsTraceLog bootTimingsTraceLog = new TimingsTraceLog(bootTimeTag,
Trace.TRACE_TAG_DALVIK);
//启用 Trace:ZygoteInit
bootTimingsTraceLog.traceBegin("ZygoteInit");
RuntimeInit.preForkInit();
//定义变量,准备解析参数
boolean startSystemServer = false;
String zygoteSocketName = "zygote";
String abiList = null;
boolean enableLazyPreload = false;
//解析参数
for (int i = 1; i < argv.length; i++) {
if ("start-system-server".equals(argv[i])) {
startSystemServer = true;
} else if ("--enable-lazy-preload".equals(argv[i])) {
enableLazyPreload = true;
} else if (argv[i].startsWith(ABI_LIST_ARG)) {
abiList = argv[i].substring(ABI_LIST_ARG.length());
} else if (argv[i].startsWith(SOCKET_NAME_ARG)) {
zygoteSocketName = argv[i].substring(SOCKET_NAME_ARG.length());
} else {
throw new RuntimeException("Unknown command line argument: " + argv[i]);
}
}
final boolean isPrimaryZygote = zygoteSocketName.equals(Zygote.PRIMARY_SOCKET_NAME);
if (abiList == null) {
throw new RuntimeException("No ABI list supplied.");
}
//参数解析完毕
//如果没有启用懒加载
if (!enableLazyPreload) {
//启用TraceLog:ZygotePreload
bootTimingsTraceLog.traceBegin("ZygotePreload");
EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,
SystemClock.uptimeMillis());
//预加载
preload(bootTimingsTraceLog);
EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,
SystemClock.uptimeMillis());
//停止TraceLog:ZygotePreload
bootTimingsTraceLog.traceEnd(); // ZygotePreload
}
// Do an initial gc to clean up after startup
//启用TraceLog:PostZygoteInitGC
bootTimingsTraceLog.traceBegin("PostZygoteInitGC");
gcAndFinalize();
//停止TraceLog:PostZygoteInitGC
bootTimingsTraceLog.traceEnd(); // PostZygoteInitGC
//停止TraceLog:ZygoteInit
bootTimingsTraceLog.traceEnd(); // ZygoteInit
Zygote.initNativeState(isPrimaryZygote);
//停止NoThread
ZygoteHooks.stopZygoteNoThreadCreation();
//创建ZygoteServer
zygoteServer = new ZygoteServer(isPrimaryZygote);
//如果是startSystemServer,就启动SystemServer
if (startSystemServer) {
//启动SystemServer进程[4.2]
Runnable r = forkSystemServer(abiList, zygoteSocketName, zygoteServer);
// {@code r == null} in the parent (zygote) process, and {@code r != null} in the
// child (system_server) process.
if (r != null) {
r.run();
return;
}
}
Log.i(TAG, "Accepting command socket connections");
//zygoteServer中一个比较重要的方法
caller = zygoteServer.runSelectLoop(abiList);
} catch (Throwable ex) {
Log.e(TAG, "System zygote died with exception", ex);
throw ex;
} finally {
if (zygoteServer != null) {
zygoteServer.closeServerSocket();
}
}
// command.
if (caller != null) {
//开始loop循环
caller.run();
}
}
4.1 Zygote的预加载
[ZygoteInit.java]
static void preload(TimingsTraceLog bootTimingsTraceLog) {
Log.d(TAG, "begin preload");
bootTimingsTraceLog.traceBegin("BeginPreload");
beginPreload();
bootTimingsTraceLog.traceEnd(); // BeginPreload
bootTimingsTraceLog.traceBegin("PreloadClasses");
//预加载class
preloadClasses();
bootTimingsTraceLog.traceEnd(); // PreloadClasses
bootTimingsTraceLog.traceBegin("CacheNonBootClasspathClassLoaders");
cacheNonBootClasspathClassLoaders();
bootTimingsTraceLog.traceEnd(); // CacheNonBootClasspathClassLoaders
bootTimingsTraceLog.traceBegin("PreloadResources");
//预加载资源
preloadResources();
bootTimingsTraceLog.traceEnd(); // PreloadResources
Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadAppProcessHALs");
nativePreloadAppProcessHALs();
Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadGraphicsDriver");
maybePreloadGraphicsDriver();
Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
//预加载Libraries
preloadSharedLibraries();
//预加载文字相关
preloadTextResources();
// Ask the WebViewFactory to do any initialization that must run in the zygote process,
// for memory sharing purposes.
WebViewFactory.prepareWebViewInZygote();
endPreload();
warmUpJcaProviders();
Log.d(TAG, "end preload");
sPreloadComplete = true;
}
Zygote中系统预加载的东西非常多,这里就简单列举资源和Class两个进行说明
4.1.1 预加载资源
在我们使用App的时候,我们会经常的使用一些com.android.R.XXX之类的资源文件,这些资源文件就是在Zygote中进行预加载的,这里做一个简单的列举
[ZygoteInit.java]
//这里加载的一些属性都是系统中定义的R.xx.xxx文件中的属性
private static void preloadResources() {
final VMRuntime runtime = VMRuntime.getRuntime();
try {
mResources = Resources.getSystem();
mResources.startPreloading();
if (PRELOAD_RESOURCES) {
Log.i(TAG, "Preloading resources...");
long startTime = SystemClock.uptimeMillis();
TypedArray ar = mResources.obtainTypedArray(
com.android.internal.R.array.preloaded_drawables);
int N = preloadDrawables(ar);
ar.recycle();
Log.i(TAG, "...preloaded " + N + " resources in "
+ (SystemClock.uptimeMillis() - startTime) + "ms.");
startTime = SystemClock.uptimeMillis();
ar = mResources.obtainTypedArray(
com.android.internal.R.array.preloaded_color_state_lists);
N = preloadColorStateLists(ar);
ar.recycle();
...
}
mResources.finishPreloading();
} catch (RuntimeException e) {
Log.w(TAG, "Failure preloading resources", e);
}
}
4.1.2 预加载Class
Class的预加载,是加载预先定义在一个文件中的Class,这个文件是通过工具生成的
private static void preloadClasses() {
final VMRuntime runtime = VMRuntime.getRuntime();
InputStream is;
try {
//拿到需要预加载类的文件地址
is = new FileInputStream(PRELOADED_CLASSES);
} catch (FileNotFoundException e) {
Log.e(TAG, "Couldn't find " + PRELOADED_CLASSES + ".");
return;
}
...
try {
BufferedReader br =
new BufferedReader(new InputStreamReader(is), Zygote.SOCKET_BUFFER_SIZE);
int count = 0;
String line;
//读取需要预加载的文件中的每一行
while ((line = br.readLine()) != null) {
line = line.trim();
if (line.startsWith("#") || line.equals("")) {
continue;
}
Trace.traceBegin(Trace.TRACE_TAG_DALVIK, line);
try {
//加载class
Class.forName(line, true, null);
count++;
} catch (ClassNotFoundException e) {
Log.w(TAG, "Class not found for preloading: " + line);
} catch (UnsatisfiedLinkError e) {
Log.w(TAG, "Problem preloading " + line + ": " + e);
} catch (Throwable t) {
...
}
Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
}
Log.i(TAG, "...preloaded " + count + " classes in "
+ (SystemClock.uptimeMillis() - startTime) + "ms.");
} catch (IOException e) {
Log.e(TAG, "Error reading " + PRELOADED_CLASSES + ".", e);
} finally {
IoUtils.closeQuietly(is);
Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadDexCaches");
//使用预加载的类,字段和方法填充dex缓存。
runtime.preloadDexCaches();
Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
...//一些收尾工作
}
}
4.2 SystemServer的启动
Zygote还有一个重要的作用就是启动SystemServer,它是framework的核心进程,下面就来看看这个进程的启动流程
[ZygoteInit.java]
private static Runnable forkSystemServer(String abiList, String socketName,
ZygoteServer zygoteServer) {
//首先准备一些参数
long capabilities = posixCapabilitiesAsBits(
...
);
...
String args[] = {
...,
"com.android.server.SystemServer",
};
//将这些参数通过ZygoteArguments进行封装
ZygoteArguments parsedArgs = null;
int pid;
try {
parsedArgs = new ZygoteArguments(args);
...
//调用真正的fork函数,这是一个native层的方法,对应在native层是
//com_android_internal_os_Zygote_nativeForkSystemServer
pid = Zygote.forkSystemServer(
parsedArgs.mUid, parsedArgs.mGid,
parsedArgs.mGids,
parsedArgs.mRuntimeFlags,
null,
parsedArgs.mPermittedCapabilities,
parsedArgs.mEffectiveCapabilities);
} catch (IllegalArgumentException ex) {
throw new RuntimeException(ex);
}
if (pid == 0) {
//如果需要第二个Zygote,那么就等待第二个socket
if (hasSecondZygote(abiList)) {
waitForSecondaryZygote(socketName);
}
//子进程会继承父进程的相关资源,这里需要关闭
zygoteServer.closeServerSocket();
//处理SystemServer相关的参数
return handleSystemServerProcess(parsedArgs);
}
return null;
}
[com_android_internal_os_Zygote.cpp]
static jint com_android_internal_os_Zygote_nativeForkSystemServer(
JNIEnv* env, jclass, uid_t uid, gid_t gid, jintArray gids,
jint runtime_flags, jobjectArray rlimits, jlong permitted_capabilities,
jlong effective_capabilities) {
...
//通过fork创建子进程
pid_t pid = ForkCommon(env, true,
fds_to_close,
fds_to_ignore);
if (pid == 0) {
//父进程的逻辑
SpecializeCommon(env, uid, gid, gids, runtime_flags, rlimits,
permitted_capabilities, effective_capabilities,
MOUNT_EXTERNAL_DEFAULT, nullptr, nullptr, true,
false, nullptr, nullptr);
} else if (pid > 0) {
//子进程的逻辑
gSystemServerPid = pid;
...
}
return pid;
}
- 首先,会在ZygoteInit中调用forkSystemServer会调用到Zygote中的nativeForkSystemServer,
- 这是一个native方法,它已经在之前的init进程中进行了动态注册(见Init进程的启动),所以这里会调用到对应native层中的com_android_internal_os_Zygote_nativeForkSystemServer
- 然后在这个方法中就会调用到ForkCommon,这个函数是一个对fork的封装,它除了fork之外,还会做一些相关SIGCHLD的操作
- 如果是SystemServer进程,那么在ForkCommon方法中,会和Zygote进程绑定,如果接收到SystemServer进程挂掉的信号,那么就kill掉Zygote进程
到这里,SystemServer进程的启动算是完成了,当然关于SystemServer,还有很多内容,这个之前再聊。
五 总结
到这里,Zygote的启动过程就算是基本完成了,只是关于Zygote做的一些事情还有很多,比如如何和AMS通信的,如何fork子进程的,Zygote的loop循环是怎么做的等等,这个就需要之后详细说明了,Android系统的源码较大,本篇也只能从中找出一些重要过程来说明,如果存在遗漏或错误的地方,欢迎补充指正