你学了这么多年数据结构,到底有多少种树,你知道吗?
数据结构中有很多树的结构,其中包括二叉树、二叉搜索树、2-3树、红黑树等等。本文中对数据结构中常见的几种树的概念和用途进行了汇总,不求严格精准,但求简单易懂。
-
[1\. 二叉树](https://editor.csdn.net/md/?articleId=105180220#1__8)
-
[1.1 二叉树的定义](https://editor.csdn.net/md/?articleId=105180220#11__11)
-
[1.2 二叉树的示例](https://editor.csdn.net/md/?articleId=105180220#12__19)
-
[1.3 满二叉树和完全二叉树](https://editor.csdn.net/md/?articleId=105180220#13__23)
-
[1.3.1 满二叉树](https://editor.csdn.net/md/?articleId=105180220#131__25)
-
[1.3.2 完全二叉树](https://editor.csdn.net/md/?articleId=105180220#132__34)
-
[1.4 二叉树的性质](https://editor.csdn.net/md/?articleId=105180220#14__41)
-
[2\. 二叉查找树](https://editor.csdn.net/md/?articleId=105180220#2__59)
-
[3\. 平衡二叉树](https://editor.csdn.net/md/?articleId=105180220#3__269)
-
[3.1 平衡查找树之AVL树](https://editor.csdn.net/md/?articleId=105180220#31_AVL_280)
-
[3.2 平衡二叉树之红黑树](https://editor.csdn.net/md/?articleId=105180220#32__561)
-
[4\. B树](https://editor.csdn.net/md/?articleId=105180220#4_B_1016)
-
[4.1 什么是B树](https://editor.csdn.net/md/?articleId=105180220#41_B_1019)
-
[4.2 B树的性质](https://editor.csdn.net/md/?articleId=105180220#42_B_1024)
-
[5\. B+树](https://editor.csdn.net/md/?articleId=105180220#5_B_1051)
-
[5.1 什么是B+树](https://editor.csdn.net/md/?articleId=105180220#51_B_1052)
-
[5.2 B+的性质](https://editor.csdn.net/md/?articleId=105180220#52_B_1069)
-
[6\. B*树](https://editor.csdn.net/md/?articleId=105180220#6_B_1083)
-
[7\. R树](https://editor.csdn.net/md/?articleId=105180220#7_R_1098)
-
[8\. Trie树](https://editor.csdn.net/md/?articleId=105180220#8_Trie_1105)
-
[8.1 什么是Trie树](https://editor.csdn.net/md/?articleId=105180220#81_Trie_1106)
-
[8.2 Trie树的三个基本性质](https://editor.csdn.net/md/?articleId=105180220#82_Trie_1110)
-
[8.3 Tire树的应用](https://editor.csdn.net/md/?articleId=105180220#83_Tire_1115)
1. 二叉树
二叉树是数据结构中一种重要的数据结构,也是树表家族最为基础的结构。
1.1 二叉树的定义
二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。
-
二叉树的第i层至多有2i-1个结点;
-
深度为k的二叉树至多有2k-1个结点;
-
对任何一棵二叉树T,如果其终端结点数为n_0n0,度为2的结点数为n_2n2,则n_0=n_2+1n0=n2+1。
注:二叉树当中的结点只有度为0、1、2三种情况,度为0就是终端结点.构造二叉树的过程就是从原始结点开始“生长”结点的过程,初始状态下,原始结点就是终端结点,n0=1,n1=0,n2=0,每当一个原来的终端结点变成“1度结点”的时候只是把终端的位置向下移动了一点,n1++,不影响n0和n2,而每当一个原来的终端结点变成“2度结点”的时候,原来的终端消失,增加两个终端,总效果就是n0++,n2++,所以二叉树当中的n0和n2总是同步增加,即总是满足n0=n2+1。
1.2 二叉树的示例

1.3 满二叉树和完全二叉树
1.3.1 满二叉树
除最后一层无任何子节点外,每一层上的所有结点都有两个子结点。也可以这样理解,除叶子结点外的所有结点均有两个子结点。节点数达到最大值,所有叶子结点必须在同一层上。
满二叉树的性质:
-
一颗树深度为h,最大层数为k,深度与最大层数相同,k=h;
-
叶子数为2h-1;
-
第k层的结点数是:2k-1;
-
总结点数是:2k-1,且总节点数一定是奇数。
1.3.2 完全二叉树
若设二叉树的深度为h,除第 h 层外,其它各层 (1~(h-1)层) 的结点数都达到最大个数,第h层所有的结点都连续集中在最左边,这就是完全二叉树。
注: 完全二叉树是效率很高的数据结构,堆是一种完全二叉树或者近似完全二叉树,所以效率极高,像十分常用的排序算法、Dijkstra算法、Prim算法等都要用堆才能优化,二叉排序树的效率也要借助平衡性来提高,而平衡性基于完全二叉树。

1.4 二叉树的性质
-
在非空二叉树中,第i层的结点总数不超过2i-1, i>=1;
-
深度为h的二叉树最多有2h-1个结点(h>=1),最少有h个结点;
-
对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
-
具有n个结点的完全二叉树的深度为 log_2 ⌊n⌋+1log2⌊n⌋+1;
-
有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:

-
给定N个节点,能构成h(N)种不同的二叉树,其中h(N)为卡特兰数的第N项,h(n)=C(2*n, n)/(n+1)h(n)=C(2∗n,n)/(n+1)。
-
设有i个枝点,I为所有枝点的道路长度总和,J为叶的道路长度总和J=I+2iJ=I+2i。
2. 二叉查找树
二叉查找树定义:又称为是二叉排序树(Binary Sort Tree)或二叉搜索树。二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:
-
若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
-
若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;
-
左、右子树也分别为二叉排序树;
-
没有键值相等的节点。
二叉查找树的性质: 对二叉查找树进行中序遍历,即可得到有序的数列。
二叉查找树的时间复杂度:它和二分查找一样,插入和查找的时间复杂度均为O(logn),但是在最坏的情况下仍然会有O(n)的时间复杂度。原因在于插入和删除元素的时候,树没有保持平衡(比如,我们查找上图(b)中的“93”,我们需要进行n次查找操作)。我们追求的是在最坏的情况下仍然有较好的时间复杂度,这就是平衡查找树设计的初衷。
二叉查找树的高度决定了二叉查找树的查找效率。
二叉查找树的插入过程如下:
-
若当前的二叉查找树为空,则插入的元素为根节点;
-
若插入的元素值小于根节点值,则将元素插入到左子树中;
-
若插入的元素值不小于根节点值,则将元素插入到右子树中。
二叉查找树的删除,分三种情况进行处理:
-
p为叶子节点,直接删除该节点,再修改其父节点的指针(注意分是根节点和不是根节点),如图a;
-
p为单支节点(即只有左子树或右子树)。让p的子树与p的父亲节点相连,删除p即可(注意分是根节点和不是根节点),如图b;
-
p的左子树和右子树均不空。找到p的后继y,因为y一定没有左子树,所以可以删除y,并让y的父亲节点成为y的右子树的父亲节点,并用y的值代替p的值;或者方法二是找到p的前驱x,x一定没有右子树,所以可以删除x,并让x的父亲节点成为y的左子树的父亲节点。如图c。



二叉树相关实现源码:
插入操作:
struct node
{
int val;
pnode lchild;
pnode rchild;
};
pnode BT = NULL;
//递归方法插入节点
pnode insert(pnode root, int x)
{
if(root == NULL){
pnode p = (pnode)malloc(LEN);
p->val = x;
p->lchild = NULL;
p->rchild = NULL;
root = p;
}
else if(x < root->val){
root->lchild = insert(root->lchild, x);
}
else{
root->rchild = insert(root->rchild, x);
}
return root;
}
//非递归方法插入节点
void insert_BST(pnode q, int x)
{
pnode p = (pnode)malloc(LEN);
p->val = x;
p->lchild = NULL;
p->rchild = NULL;
if(q == NULL){
BT = p;
return ;
}
while(q->lchild != p && q->rchild != p){
if(x < q->val){
if(q->lchild){
q = q->lchild;
}
else{
q->lchild = p;
}
}
else{
if(q->rchild){
q = q->rchild;
}
else{
q->rchild = p;
}
}
}
return;
}
删除操作:
bool delete_BST(pnode p, int x) //返回一个标志,表示是否找到被删元素
{
bool find = false;
pnode q;
p = BT;
while(p && !find){ //寻找被删元素
if(x == p->val){ //找到被删元素
find = true;
}
else if(x < p->val){ //沿左子树找
q = p;
p = p->lchild;
}
else{ //沿右子树找
q = p;
p = p->rchild;
}
}
if(p == NULL){ //没找到
cout << "没有找到" << x << endl;
}
if(p->lchild == NULL && p->rchild == NULL){ //p为叶子节点
if(p == BT){ //p为根节点
BT = NULL;
}
else if(q->lchild == p){
q->lchild = NULL;
}
else{
q->rchild = NULL;
}
free(p); //释放节点p
}
else if(p->lchild == NULL || p->rchild == NULL){ //p为单支子树
if(p == BT){ //p为根节点
if(p->lchild == NULL){
BT = p->rchild;
}
else{
BT = p->lchild;
}
}
else{
if(q->lchild == p && p->lchild){ //p是q的左子树且p有左子树
q->lchild = p->lchild; //将p的左子树链接到q的左指针上
}
else if(q->lchild == p && p->rchild){
q->lchild = p->rchild;
}
else if(q->rchild == p && p->lchild){
q->rchild = p->lchild;
}
else{
q->rchild = p->rchild;
}
}
free(p);
}
else{ //p的左右子树均不为空
pnode t = p;
pnode s = p->lchild; //从p的左子节点开始
while(s->rchild){ //找到p的前驱,即p左子树中值最大的节点
t = s;
s = s->rchild;
}
p->val = s->val; //把节点s的值赋给p
if(t == p){
p->lchild = s->lchild;
}
else{
t->rchild = s->lchild;
}
free(s);
}
return find;
}
查找操作:
pnode search_BST(pnode p, int x)
{
bool solve = false;
while(p && !solve){
if(x == p->val){
solve = true;
}
else if(x < p->val){
p = p->lchild;
}
else{
p = p->rchild;
}
}
if(p == NULL){
cout << "没有找到" << x << endl;
}
return p;
}
3. 平衡二叉树
我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度O(log2n)同时也由此而决定。但是,在某些极端的情况下(如在插入的序列是有序的时),二叉搜索树将退化成近似链或链,此时,其操作的时间复杂度将退化成线性的,即O(n)。我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉。这同时也会造成树的平衡性受到破坏,提高它的操作的时间复杂度。于是就有了我们下边介绍的平衡二叉树。
平衡二叉树定义:平衡二叉树(Balanced Binary Tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用算法有红黑树、AVL树等。在平衡二叉搜索树中,我们可以看到,其高度一般都良好地维持在O(log2n),大大降低了操作的时间复杂度。
最小二叉平衡树的节点的公式如下:

这个类似于一个递归的数列,可以参考Fibonacci数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量。
3.1 平衡查找树之AVL树
有关AVL树的具体实现,可以参考C小加的博客[《一步一步写平衡二叉树(AVL)》](http://www.cppblog.com/cxiaojia/archive/2012/08/20/187776.html)。
AVL树定义:AVL树是最先发明的自平衡二叉查找树。AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 “An algorithm for the organization of information” 中发表了它。在AVL中任何节点的两个儿子子树的高度最大差别为1,所以它也被称为高度平衡树,n个结点的AVL树最大深度约1.44log2n。查找、插入和删除在平均和最坏情况下都是O(logn)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。
这个方案很好的解决了二叉查找树退化成链表的问题,把插入,查找,删除的时间复杂度最好情况和最坏情况都维持在O(logN)。但是频繁旋转会使插入和删除牺牲掉O(logN)左右的时间,不过相对二叉查找树来说,时间上稳定了很多。
AVL树的自平衡操作——旋转:
AVL树最关键的也是最难的一步操作就是旋转。旋转主要是为了实现AVL树在实施了插入和删除操作以后,树重新回到平衡的方法。下面我们重点研究一下AVL树的旋转。
对于一个平衡的节点,由于任意节点最多有两个儿子,因此高度不平衡时,此节点的两颗子树的高度差2.容易看出,这种不平衡出现在下面四种情况:

-
6节点的左子树3节点高度比右子树7节点大2,左子树3节点的左子树1节点高度大于右子树4节点,这种情况成为左左。
-
6节点的左子树2节点高度比右子树7节点大2,左子树2节点的左子树1节点高度小于右子树4节点,这种情况成为左右。
-
2节点的左子树1节点高度比右子树5节点小2,右子树5节点的左子树3节点高度大于右子树6节点,这种情况成为右左。
-
2节点的左子树1节点高度比右子树4节点小2,右子树4节点的左子树3节点高度小于右子树6节点,这种情况成为右右。
3.2 平衡二叉树之红黑树
红黑树的定义:红黑树是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。它是在1972年由鲁道夫·贝尔发明的,称之为"对称二叉B树",它现代的名字是在 Leo J. Guibas 和 Robert Sedgewick 于1978年写的一篇论文中获得的。它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的: 它可以在O(logn)时间内做查找,插入和删除,这里的n是树中元素的数目。
红黑树和AVL树一样都对插入时间、删除时间和查找时间提供了最好可能的最坏情况担保。这不只是使它们在时间敏感的应用如实时应用(real time application)中有价值,而且使它们有在提供最坏情况担保的其他数据结构中作为建造板块的价值;例如,在计算几何中使用的很多数据结构都可以基于红黑树。此外,红黑树还是2-3-4树的一种等同,它们的思想是一样的,只不过红黑树是2-3-4树用二叉树的形式表示的。
红黑树的性质:
红黑树是每个节点都带有颜色属性的二叉查找树,颜色为红色或黑色。在二叉查找树强制的一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求:
-
性质1\. 节点是红色或黑色。
-
性质2\. 根是黑色。
-
性质3\. 所有叶子都是黑色(叶子是NIL节点)。
-
性质4\. 每个红色节点必须有两个黑色的子节点。(从每个叶子到根的所有路径上不能有两个连续的红色节点。)
-
性质5\. 从任一节点到其每个叶子的所有简单路径都包含相同数目的黑色节点。
下面是一个具体的红黑树的图例:

An example of a red-black tree
这些约束确保了红黑树的关键特性: 从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。结果是这个树大致上是平衡的。因为操作比如插入、删除和查找某个值的最坏情况时间都要求与树的高度成比例,这个在高度上的理论上限允许红黑树在最坏情况下都是高效的,而不同于普通的二叉查找树。
要知道为什么这些性质确保了这个结果,注意到性质4导致了路径不能有两个毗连的红色节点就足够了。最短的可能路径都是黑色节点,最长的可能路径有交替的红色和黑色节点。因为根据性质5所有最长的路径都有相同数目的黑色节点,这就表明了没有路径能多于任何其他路径的两倍长。
以下内容整理自[wiki百科之红黑树](https://zh.wikipedia.org/wiki/%E7%BA%A2%E9%BB%91%E6%A0%91)。
红黑树的自平衡操作:
因为每一个红黑树也是一个特化的二叉查找树,因此红黑树上的只读操作与普通二叉查找树上的只读操作相同。然而,在红黑树上进行插入操作和删除操作会导致不再符合红黑树的性质。恢复红黑树的性质需要少量(O(logn))的颜色变更(实际是非常快速的)和不超过三次树旋转(对于插入操作是两次)。虽然插入和删除很复杂,但操作时间仍可以保持为O(logn) 次。
我们首先以二叉查找树的方法增加节点并标记它为红色。如果设为黑色,就会导致根到叶子的路径上有一条路上,多一个额外的黑节点,这个是很难调整的(违背性质5)。但是设为红色节点后,可能会导致出现两个连续红色节点的冲突,那么可以通过颜色调换(color flips)和树旋转来调整。下面要进行什么操作取决于其他临近节点的颜色。同人类的家族树中一样,我们将使用术语叔父节点来指一个节点的父节点的兄弟节点。注意:
-
性质1和性质3总是保持着。
-
性质4只在增加红色节点、重绘黑色节点为红色,或做旋转时受到威胁。
-
性质5只在增加黑色节点、重绘红色节点为黑色,或做旋转时受到威胁。
插入操作:
假设,将要插入的节点标为N,N的父节点标为P,N的祖父节点标为G,N的叔父节点标为U。在图中展示的任何颜色要么是由它所处情形这些所作的假定,要么是假定所暗含的。
-
情形1: 该树为空树,直接插入根结点的位置,违反性质1,把节点颜色有红改为黑即可。
-
情形2: 插入节点N的父节点P为黑色,不违反任何性质,无需做任何修改。在这种情形下,树仍是有效的。性质5也未受到威胁,尽管新节点N有两个黑色叶子子节点;但由于新节点N是红色,通过它的每个子节点的路径就都有同通过它所取代的黑色的叶子的路径同样数目的黑色节点,所以依然满足这个性质。
注: 情形1很简单,情形2中P为黑色,一切安然无事,但P为红就不一样了,下边是P为红的各种情况,也是真正难懂的地方。
-
情形3: 如果父节点P和叔父节点U二者都是红色,(此时新插入节点N做为P的左子节点或右子节点都属于情形3,这里右图仅显示N做为P左子的情形)则我们可以将它们两个重绘为黑色并重绘祖父节点G为红色(用来保持性质4)。现在我们的新节点N有了一个黑色的父节点P。因为通过父节点P或叔父节点U的任何路径都必定通过祖父节点G,在这些路径上的黑节点数目没有改变。但是,红色的祖父节点G的父节点也有可能是红色的,这就违反了性质4。为了解决这个问题,我们在祖父节点G上递归地进行上述情形的整个过程(把G当成是新加入的节点进行各种情形的检查)。比如,G为根节点,那我们就直接将G变为黑色(情形1);如果G不是根节点,而它的父节点为黑色,那符合所有的性质,直接插入即可(情形2);如果G不是根节点,而它的父节点为红色,则递归上述过程(情形3)。

-
情形4: 父节点P是红色而叔父节点U是黑色或缺少,新节点N是其父节点的左子节点,而父节点P又是其父节点G的左子节点。在这种情形下,我们进行针对祖父节点G的一次右旋转; 在旋转产生的树中,以前的父节点P现在是新节点N和以前的祖父节点G的父节点。我们知道以前的祖父节点G是黑色,否则父节点P就不可能是红色(如果P和G都是红色就违反了性质4,所以G必须是黑色)。我们切换以前的父节点P和祖父节点G的颜色,结果的树满足性质4。性质5也仍然保持满足,因为通过这三个节点中任何一个的所有路径以前都通过祖父节点G,现在它们都通过以前的父节点P。在各自的情形下,这都是三个节点中唯一的黑色节点。

-
情形5: 父节点P是红色而叔父节点U是黑色或缺少,并且新节点N是其父节点P的右子节点而父节点P又是其父节点的左子节点。在这种情形下,我们进行一次左旋转调换新节点和其父节点的角色; 接着,我们按情形4处理以前的父节点P以解决仍然失效的性质4。注意这个改变会导致某些路径通过它们以前不通过的新节点N(比如图中1号叶子节点)或不通过节点P(比如图中3号叶子节点),但由于这两个节点都是红色的,所以性质5仍有效。

注: 插入实际上是原地算法,因为上述所有调用都使用了尾部递归。
删除操作:
4. B树
B树也是一种用于查找的平衡树,但是它不是二叉树。
4.1 什么是B树
由于掘金篇幅限制,剩余内容请参看同名CSND原文连接:
推荐阅读:
[1] [数据结构与算法 | 你知道快速排序,那你知道它的衍生应用吗?Partition函数](https://blog.csdn.net/Charmve/article/details/105265266)
[2] [数据结构与算法 | 二分查找:剑指offer53 在排序数组中查找数字](https://blog.csdn.net/Charmve/article/details/105510680)
关注微信公众号:迈微电子研发社,回复获取更多精彩内容。

微信扫一扫,**关注我**
MaiweiE-com | WeChat ID:Yida_Zhang2
机器学习+智能控制