一、Raft算法概述
1、三种角色
Raft是一个用于管理日志一致性的协议。它将分布式一致性分解为多个子问题:Leader选举(Leader election)、日志复制(Log replication)、安全性(Safety)、日志压缩(Log compaction)等。同时,Raft算法使用了更强的假设来减少了需要考虑的状态,使之变的易于理解和实现。Raft将系统中的角色分为领导者(Leader)、跟从者(Follower)和候选者(Candidate):
-
Leader:接受客户端请求,并向Follower同步请求日志,当日志同步到大多数节点上后告诉Follower提交日志。
-
Follower:接受并持久化Leader同步的日志,在Leader告之日志可以提交之后,提交日志。
-
Candidate:Leader选举过程中的临时角色。
Raft要求系统在任意时刻最多只有一个Leader,正常工作期间只有Leader和Followers。Raft算法将时间分为一个个的任期(term),每一个term的开始都是Leader选举。在成功选举Leader之后,Leader会在整个term内管理整个集群。如果Leader选举失败,该term就会因为没有Leader而结束。
2、Term
Raft 算法将时间划分成为任意不同长度的任期(term)。任期用连续的数字进行表示。每一个任期的开始都是一次选举(election),一个或多个候选人会试图成为领导人。如果一个候选人赢得了选举,它就会在该任期的剩余时间担任领导人。在某些情况下,选票会被瓜分,有可能没有选出领导人,那么,将会开始另一个任期,并且立刻开始下一次选举。Raft 算法保证在给定的一个任期最多只有一个领导人。
3、RPC
Raft 算法中服务器节点之间通信使用远程过程调用(RPC),并且基本的一致性算法只需要两种类型的 RPC,为了在服务器之间传输快照增加了第三种 RPC。
【RPC有三种】:
-
RequestVote RPC:候选人在选举期间发起。
-
AppendEntries RPC:领导人发起的一种心跳机制,复制日志也在该命令中完成。
-
InstallSnapshot RPC: 领导者使用该RPC来发送快照给太落后的追随者。
二、Leader选举
1、Leader选举的过程
Raft 使用心跳(heartbeat)触发Leader选举。当服务器启动时,初始化为Follower。Leader向所有Followers周期性发送heartbeat。如果Follower在选举超时时间内没有收到Leader的heartbeat,就会等待一段随机的时间后发起一次Leader选举。
每一个follower都有一个时钟,是一个随机的值,表示的是follower等待成为leader的时间,谁的时钟先跑完,则发起leader选举。
Follower将其当前term加一然后转换为Candidate。它首先给自己投票并且给集群中的其他服务器发送 RequestVote RPC。结果有以下三种情况:
-
赢得了多数的选票,成功选举为Leader;
-
收到了Leader的消息,表示有其它服务器已经抢先当选了Leader;
-
没有服务器赢得多数的选票,Leader选举失败,等待选举时间超时后发起下一次选举。
2、Leader选举的限制
在Raft协议中,所有的日志条目都只会从Leader节点往Follower节点写入,且Leader节点上的日志只会增加,绝对不会删除或者覆盖。
这意味着Leader节点必须包含所有已经提交的日志,即能被选举为Leader的节点一定需要包含所有的已经提交的日志。因为日志只会从Leader向Follower传输,所以如果被选举出的Leader缺少已经Commit的日志,那么这些已经提交的日志就会丢失,显然这是不符合要求的。
这就是Leader选举的限制:能被选举成为Leader的节点,一定包含了所有已经提交的日志条目。
三、日志复制(保证数据一致性)
1、日志复制的过程
Leader选出后,就开始接收客户端的请求。Leader把请求作为日志条目(Log entries)加入到它的日志中,然后并行的向其他服务器发起 AppendEntries RPC复制日志条目。当这条日志被复制到大多数服务器上,Leader将这条日志应用到它的状态机并向客户端返回执行结果。
-
客户端的每一个请求都包含被复制状态机执行的指令。
-
leader把这个指令作为一条新的日志条目添加到日志中,然后并行发起 RPC 给其他的服务器,让他们复制这条信息。
-
假如这条日志被安全的复制,领导人就应用这条日志到自己的状态机中,并返回给客户端。
-
如果 follower 宕机或者运行缓慢或者丢包,leader会不断的重试,直到所有的 follower 最终都复制了所有的日志条目。
2、日志的组成
日志由有序编号(log index)的日志条目组成。每个日志条目包含它被创建时的任期号(term)和用于状态机执行的命令。如果一个日志条目被复制到大多数服务器上,就被认为可以提交(commit)了。
上图显示,共有 8 条日志,提交了 7 条。提交的日志都将通过状态机持久化到磁盘中,防止宕机。
3、日志的一致性
(1)日志复制的两条保证
-
如果不同日志中的两个条目有着相同的索引和任期号,则它们所存储的命令是相同的(原因:leader 最多在一个任期里的一个日志索引位置创建一条日志条目,日志条目在日志的位置从来不会改变)。
-
如果不同日志中的两个条目有着相同的索引和任期号,则它们之前的所有条目都是完全一样的(原因:每次 RPC 发送附加日志时,leader 会把这条日志条目的前面的日志的下标和任期号一起发送给 follower,如果 follower 发现和自己的日志不匹配,那么就拒绝接受这条日志,这个称之为一致性检查)。
(2)日志的不正常情况
一般情况下,Leader和Followers的日志保持一致,因此 AppendEntries 一致性检查通常不会失败。然而,Leader崩溃可能会导致日志不一致:旧的Leader可能没有完全复制完日志中的所有条目。
下图阐述了一些Followers可能和新的Leader日志不同的情况。一个Follower可能会丢失掉Leader上的一些条目,也有可能包含一些Leader没有的条目,也有可能两者都会发生。丢失的或者多出来的条目可能会持续多个任期。
(3)如何保证日志的正常复制
Leader通过强制Followers复制它的日志来处理日志的不一致,Followers上的不一致的日志会被Leader的日志覆盖。Leader为了使Followers的日志同自己的一致,Leader需要找到Followers同它的日志一致的地方,然后覆盖Followers在该位置之后的条目。
具体的操作是:Leader会从后往前试,每次AppendEntries失败后尝试前一个日志条目,直到成功找到每个Follower的日志一致位置点(基于上述的两条保证),然后向后逐条覆盖Followers在该位置之后的条目。
总结一下就是:当 leader 和 follower 日志冲突的时候,leader 将校验 follower 最后一条日志是否和 leader 匹配,如果不匹配,将递减查询,直到匹配,匹配后,删除冲突的日志。这样就实现了主从日志的一致性。
四、安全性
Raft增加了如下两条限制以保证安全性:
-
拥有最新的已提交的log entry的Follower才有资格成为leader。
-
Leader只能推进commit index来提交当前term的已经复制到大多数服务器上的日志,旧term日志的提交要等到提交当前term的日志来间接提交(log index 小于 commit index的日志被间接提交)。
五、日志压缩
在实际的系统中,不能让日志无限增长,否则系统重启时需要花很长的时间进行回放,从而影响可用性。Raft采用对整个系统进行snapshot来解决,snapshot之前的日志都可以丢弃(以前的数据已经落盘了)。
每个副本独立的对自己的系统状态进行snapshot,并且只能对已经提交的日志记录进行snapshot。
【Snapshot中包含以下内容】:
-
日志元数据,最后一条已提交的 log entry的 log index和term。这两个值在snapshot之后的第一条log entry的AppendEntries RPC的完整性检查的时候会被用上。
-
系统当前状态。
当Leader要发给某个日志落后太多的Follower的log entry被丢弃,Leader会将snapshot发给Follower。或者当新加进一台机器时,也会发送snapshot给它。发送snapshot使用InstalledSnapshot RPC。
做snapshot既不要做的太频繁,否则消耗磁盘带宽, 也不要做的太不频繁,否则一旦节点重启需要回放大量日志,影响可用性。推荐当日志达到某个固定的大小做一次snapshot。
做一次snapshot可能耗时过长,会影响正常日志同步。可以通过使用copy-on-write技术避免snapshot过程影响正常日志同步。
六、成员变更
1、常规处理成员变更存在的问题
我们先将成员变更请求当成普通的写请求,由领导者得到多数节点响应后,每个节点提交成员变更日志,将从旧成员配置(Cold)切换到新成员配置(Cnew)。但每个节点提交成员变更日志的时刻可能不同,这将造成各个服务器切换配置的时刻也不同,这就有可能选出两个领导者,破坏安全性。
考虑以下这种情况:集群配额从 3 台机器变成了 5 台,可能存在这样的一个时间点,两个不同的领导者在同一个任期里都可以被选举成功(双主问题),一个是通过旧的配置,一个通过新的配置。
简而言之,成员变更存在的问题是增加或者减少的成员太多了,导致旧成员组和新成员组没有交集,因此出现了双主。
2、解决方案之一阶段成员变更
Raft解决方法是每次成员变更只允许增加或删除一个成员(如果要变更多个成员,连续变更多次)。
七、关于Raft的一些面试题
1、Raft分为哪几个部分?
主要是分为leader选举、日志复制、日志压缩、成员变更等。
2、Raft中任何节点都可以发起选举吗?
Raft发起选举的情况有如下几种:
-
刚启动时,所有节点都是follower,这个时候发起选举,选出一个leader;
-
当leader挂掉后,时钟最先跑完的follower发起重新选举操作,选出一个新的leader。
-
成员变更的时候会发起选举操作。
3、Raft中选举中给候选人投票的前提?
Raft确保新当选的Leader包含所有已提交(集群中大多数成员中已提交)的日志条目。这个保证是在RequestVoteRPC阶段做的,candidate在发送RequestVoteRPC时,会带上自己的last log entry的term_id和index,follower在接收到RequestVoteRPC消息时,如果发现自己的日志比RPC中的更新,就拒绝投票。日志比较的原则是,如果本地的最后一条log entry的term id更大,则更新,如果term id一样大,则日志更多的更大(index更大)。
4、Raft网络分区下的数据一致性怎么解决?
发生了网络分区或者网络通信故障,使得Leader不能访问大多数Follwer了,那么Leader只能正常更新它能访问的那些Follower,而大多数的Follower因为没有了Leader,他们重新选出一个Leader,然后这个 Leader来接受客户端的请求,如果客户端要求其添加新的日志,这个新的Leader会通知大多数Follower。如果这时网络故障修复 了,那么原先的Leader就变成Follower,在失联阶段这个老Leader的任何更新都不能算commit,都回滚,接受新的Leader的新的更新(递减查询匹配日志)。
5、Raft数据一致性如何实现?
主要是通过日志复制实现数据一致性,leader将请求指令作为一条新的日志条目添加到日志中,然后发起RPC 给所有的follower,进行日志复制,进而同步数据。
6、Raft的日志有什么特点?
日志由有序编号(log index)的日志条目组成,每个日志条目包含它被创建时的任期号(term)和用于状态机执行的命令。
7、Raft和Paxos的区别和优缺点?
-
Raft的leader有限制,拥有最新日志的节点才能成为leader,multi-paxos中对成为Leader的限制比较低,任何节点都可以成为leader。
-
Raft中Leader在每一个任期都有Term号。
8、Raft prevote机制?
Prevote(预投票)是一个类似于两阶段提交的协议,第一阶段先征求其他节点是否同意选举,如果同意选举则发起真正的选举操作,否则降为Follower角色。这样就避免了网络分区节点重新加入集群,触发不必要的选举操作。
9、Raft里面怎么保证数据被commit,leader宕机了会怎样,之前的没提交的数据会怎样?
leader会通过RPC向follower发出日志复制,等待所有的follower复制完成,这个过程是阻塞的。
老的leader里面没提交的数据会回滚,然后同步新leader的数据。
10、Raft日志压缩是怎么实现的?增加或删除节点呢??
在实际的系统中,不能让日志无限增长,否则系统重启时需要花很长的时间进行回放,从而影响可用性。Raft采用对整个系统进行snapshot来解决,snapshot之前的日志都可以丢弃(以前的数据已经落盘了)。
snapshot里面主要记录的是日志元数据,即最后一条已提交的 log entry的 log index和term。
11、Raft里面的lease机制是什么,有什么作用?
租约机制确保了一个时刻最多只有一个leader,避免只使用心跳机制产生双主的问题。中心思想是每次租约时长内只有一个节点获得租约、到期后必须重新颁发租约。
12、Raft协议的leader选举,正常情况下,网络抖动造成follower发起leader选举,且该follower的Term比现有leader高,集群中所有结点的日志信息当前一致,这种情况下会选举成功吗?
本文由转码, 原文地址 blog.csdn.net