上篇文章中介绍了几种图元的连接方式和工具类GLBatch,这边文章中对几个小练习做一下讲解,所以主要以代码讲解为主。关于流程分析可以结合之前的文章正方形绘制及移动流程图,效果更好哦。
1.定义变量
// 各种需要的类
GLShaderManager shaderManager;//平面着色器
GLMatrixStack modelViewMatrix;//模型视图矩阵 变换
GLMatrixStack projectionMatrix;//投影矩阵
GLFrame cameraFrame;//摄像机坐标
GLFrame objectFrame;//物体坐标
GLFrustum viewFrustum;//投影矩阵
//容器类(7种不同的图元对应7种容器对象)
GLBatch pointBatch;
GLBatch lineBatch;
GLBatch lineStripBatch;
GLBatch lineLoopBatch;
GLBatch triangleBatch;
GLBatch triangleStripBatch;
GLBatch triangleFanBatch;
//几何变换的管道
GLGeometryTransform transformPipeline;
GLfloat vGreen[] = { 0.0f, 1.0f, 0.0f, 1.0f };
GLfloat vBlack[] = { 0.0f, 0.0f, 0.0f, 1.0f };
// 跟踪效果步骤
int nStep = 0;
2.main 程序入口
int main(int argc, char* argv[])
{
gltSetWorkingDirectory(argv[0]);
glutInit(&argc, argv);
//申请一个颜色缓存区、深度缓存区、双缓存区、模板缓存区
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH | GLUT_STENCIL);
//设置window 的尺寸
glutInitWindowSize(800, 600);
//创建window的名称
glutCreateWindow("GL_POINTS");
//注册回调函数(改变尺寸)
glutReshapeFunc(ChangeSize);
//注册点击空格时,调用的函数
glutKeyboardFunc(KeyPressFunc);
//注册点击特殊键位函数(上下左右)时,调用的函数
glutSpecialFunc(SpecialKeys);
//注册渲染函数
glutDisplayFunc(RenderScene);
//判断一下是否能初始化glew库,确保项目能正常使用OpenGL 框架
GLenum err = glewInit();
if (GLEW_OK != err) {
fprintf(stderr, "GLEW Error: %s\n", glewGetErrorString(err));
return 1;
}
//绘制
SetupRC();
//runloop运行循环
glutMainLoop();
return 0;
}
3.SetupRC 初始化
在SetupRC函数中可以进行一下必要的初始化操作。
void SetupRC()
{
// 灰色的背景
glClearColor(0.7f, 0.7f, 0.7f, 1.0f );
//初始化着色器
shaderManager.InitializeStockShaders();
glEnable(GL_DEPTH_TEST);
//设置变换管线以使用两个矩阵堆栈
transformPipeline.SetMatrixStacks(modelViewMatrix, projectionMatrix);
//修改观察者的位置
cameraFrame.MoveForward(-15.0f);
....
}
3.1批次类的使用
关于批次类的介绍请看上一篇文章OpenGL(3)——渲染架构
//定义顶点数据
GLfloat vCoast[9] = {
3,3,0,
0,3,0,
3,0,0
};
3.1.1 点
//提交批次类
//用点的形式
pointBatch.Begin(GL_POINTS, 3);
pointBatch.CopyVertexData3f(vCoast);
pointBatch.End();
效果图:

3.1.2 线
//通过线的形式
lineBatch.Begin(GL_LINES, 3);
lineBatch.CopyVertexData3f(vCoast);
lineBatch.End();

3.1.3 线段
//通过线段的形式
lineStripBatch.Begin(GL_LINE_STRIP, 3);
lineStripBatch.CopyVertexData3f(vCoast);
lineStripBatch.End();

3.1.4 线环
//通过线环的形式
lineLoopBatch.Begin(GL_LINE_LOOP, 3);
lineLoopBatch.CopyVertexData3f(vCoast);
lineLoopBatch.End();

3.1.5 金字塔
// 通过三角形创建金字塔
GLfloat vPyramid[12][3] = {
-2.0f, 0.0f, -2.0f,
2.0f, 0.0f, -2.0f,
0.0f, 4.0f, 0.0f,
2.0f, 0.0f, -2.0f,
2.0f, 0.0f, 2.0f,
0.0f, 4.0f, 0.0f,
2.0f, 0.0f, 2.0f,
-2.0f, 0.0f, 2.0f,
0.0f, 4.0f, 0.0f,
-2.0f, 0.0f, 2.0f,
-2.0f, 0.0f, -2.0f,
0.0f, 4.0f, 0.0f
};
//GL_TRIANGLES 每3个顶点定义一个新的三角形
triangleBatch.Begin(GL_TRIANGLES, 12);
triangleBatch.CopyVertexData3f(vPyramid);
triangleBatch.End();

3.1.6 三角形扇
// 三角形扇形--六边形
GLfloat vPoints[100][3];
int nVerts = 0;
//半径
GLfloat r = 3.0f;
//原点(x,y,z) = (0,0,0);
vPoints[nVerts][0] = 0.0f;
vPoints[nVerts][1] = 0.0f;
vPoints[nVerts][2] = 0.0f;
//M3D_2PI 就是2Pi 的意思,就一个圆的意思。 绘制圆形
for(GLfloat angle = 0; angle < M3D_2PI; angle += M3D_2PI / 6.0f) {
//数组下标自增(每自增1次就表示一个顶点)
nVerts++;
/*
弧长=半径*角度,这里的角度是弧度制,不是平时的角度制
既然知道了cos值,那么角度=arccos,求一个反三角函数就行了
*/
//x点坐标 cos(angle) * 半径
vPoints[nVerts][0] = float(cos(angle)) * r;
//y点坐标 sin(angle) * 半径
vPoints[nVerts][1] = float(sin(angle)) * r;
//z点的坐标
vPoints[nVerts][2] = -0.5f;
}
// 结束扇形 前面一共绘制7个顶点(包括圆心)
//添加闭合的终点
//课程添加演示:屏蔽177-180行代码,并把绘制节点改为7.则三角形扇形是无法闭合的。
nVerts++;
vPoints[nVerts][0] = r;
vPoints[nVerts][1] = 0;
vPoints[nVerts][2] = 0.0f;
// 加载!
//GL_TRIANGLE_FAN 以一个圆心为中心呈扇形排列,共用相邻顶点的一组三角形
triangleFanBatch.Begin(GL_TRIANGLE_FAN, 8);
triangleFanBatch.CopyVertexData3f(vPoints);
triangleFanBatch.End();

3.1.7 三角形带
/三角形条带,一个小环或圆柱段 //顶点下标 int iCounter = 0; //半径 GLfloat radius = 3.0f; //从0度~360度,以0.3弧度为步长 for(GLfloat angle = 0.0f; angle <= (2.0f*M3D_PI); angle += 0.3f) { //或许圆形的顶点的X,Y GLfloat x = radius * sin(angle); GLfloat y = radius * cos(angle);
//绘制2个三角形(他们的x,y顶点一样,只是z点不一样)
vPoints[iCounter][0] = x;
vPoints[iCounter][1] = y;
vPoints[iCounter][2] = -0.5;
iCounter++;
vPoints[iCounter][0] = x;
vPoints[iCounter][1] = y;
vPoints[iCounter][2] = 0.5;
iCounter++;
}
// 关闭循环
printf("三角形带的顶点数:%d\n",iCounter);
//结束循环,在循环位置生成2个三角形
vPoints[iCounter][0] = vPoints[0][0];
vPoints[iCounter][1] = vPoints[0][1];
vPoints[iCounter][2] = -0.5;
iCounter++;
vPoints[iCounter][0] = vPoints[1][0];
vPoints[iCounter][1] = vPoints[1][1];
vPoints[iCounter][2] = 0.5;
iCounter++;
// GL_TRIANGLE_STRIP 共用一个条带(strip)上的顶点的一组三角形
triangleStripBatch.Begin(GL_TRIANGLE_STRIP, iCounter);
triangleStripBatch.CopyVertexData3f(vPoints);
triangleStripBatch.End();

4. ChangeSize 窗口变化
无论是监听到窗口大小发生变化,或第一次创建窗口,我们都需要使用窗口维度设置视口和投影矩阵.
void ChangeSize(int w, int h)
{
glViewport(0, 0, w, h);
//创建投影矩阵,
viewFrustum.SetPerspective(35.0f, float(w) / float(h), 1.0f, 500.0f);
//将投影载入投影矩阵堆栈中
projectionMatrix.LoadMatrix(viewFrustum.GetProjectionMatrix());
//模型视图矩阵 调用顶部载入单元矩阵
modelViewMatrix.LoadIdentity();
}
5. KeyPressFunc 监听空格点击
根据空格的敲击次数,更新nStep,并作出相应的状态改变:改变窗口名和改变显示图形。
void KeyPressFunc(unsigned char key, int x, int y)
{
if(key == 32)
{
nStep++;
if(nStep > 6)
nStep = 0;
}
switch(nStep)
{
case 0:
glutSetWindowTitle("GL_POINTS");
break;
case 1:
glutSetWindowTitle("GL_LINES");
break;
case 2:
glutSetWindowTitle("GL_LINE_STRIP");
break;
case 3:
glutSetWindowTitle("GL_LINE_LOOP");
break;
case 4:
glutSetWindowTitle("GL_TRIANGLES");
break;
case 5:
glutSetWindowTitle("GL_TRIANGLE_STRIP");
break;
case 6:
glutSetWindowTitle("GL_TRIANGLE_FAN");
break;
}
glutPostRedisplay();
}
6.SpecialKeys 特殊键位处理
特殊键位处理(上、下、左、右移动)。左右键,围绕Y轴旋转。上下键,围绕X轴旋转。每次旋转5个弧度单位的度数。
void SpecialKeys(int key, int x, int y)
{
if(key == GLUT_KEY_UP)
//围绕一个指定的X,Y,Z轴旋转。
objectFrame.RotateWorld(m3dDegToRad(-5.0f), 1.0f, 0.0f, 0.0f);
if(key == GLUT_KEY_DOWN)
objectFrame.RotateWorld(m3dDegToRad(5.0f), 1.0f, 0.0f, 0.0f);
if(key == GLUT_KEY_LEFT)
objectFrame.RotateWorld(m3dDegToRad(-5.0f), 0.0f, 1.0f, 0.0f);
if(key == GLUT_KEY_RIGHT)
objectFrame.RotateWorld(m3dDegToRad(5.0f), 0.0f, 1.0f, 0.0f);
glutPostRedisplay();
}
7.RenderScene 场景渲染
在RenderScene方法中有一步压栈操作,modelViewMatrix.PushMatrix()。这个操作会将当前栈中的栈顶元素也就是栈顶的矩阵复制出一份,然后重新压入到栈中。后续的矩阵相乘MultMatrix时操,会将当前栈顶元素出栈并和新的矩阵相乘,并将相乘的结果压入栈顶。最后进行出栈的操作PopMatrix, 这样可以将栈恢复到之前的状态。设计堪称精妙。
void RenderScene(void)
{
//清楚缓冲区
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
//压栈 记录状态 回退
modelViewMatrix.PushMatrix();
//观察者矩阵
M3DMatrix44f mCamera;
cameraFrame.GetCameraMatrix(mCamera);
//观察者矩阵乘以矩阵堆栈的顶部矩阵,相乘的结果随后简存储在堆栈的顶部
modelViewMatrix.MultMatrix(mCamera);
//物体矩阵
M3DMatrix44f mObjectFrame;
//只要使用 GetMatrix 函数就可以获取矩阵堆栈顶部的值,这个函数可以进行2次重载。用来使用GLShaderManager 的使用。或者是获取顶部矩阵的顶点副本数据
objectFrame.GetMatrix(mObjectFrame);
//物体矩阵乘以矩阵堆栈的顶部矩阵,相乘的结果随后简存储在堆栈的顶部
modelViewMatrix.MultMatrix(mObjectFrame);
//模型视图矩阵(观察者矩阵, 物体变换矩阵) 投影矩阵 mvp 可查看上一篇文章的相关使用介绍
shaderManager.UseStockShader(GLT_SHADER_FLAT, transformPipeline.GetModelViewProjectionMatrix(), vBlack);
switch(nStep) {
//0 1 2 3可以直接通过批次类的`Draw`方法绘制出来
case 0:
//设置点的大小
glPointSize(4.0f);
pointBatch.Draw();
glPointSize(1.0f);
break;
case 1:
//设置线的宽度
glLineWidth(2.0f);
lineBatch.Draw();
glLineWidth(1.0f);
break;
case 2:
glLineWidth(2.0f);
lineStripBatch.Draw();
glLineWidth(1.0f);
break;
case 3:
glLineWidth(2.0f);
lineLoopBatch.Draw();
glLineWidth(1.0f);
break;
//4 5 6还需要调用DrawWireFramedBatch做进一步的处理
case 4:
DrawWireFramedBatch(&triangleBatch);
break;
case 5:
DrawWireFramedBatch(&triangleStripBatch);
break;
case 6:
DrawWireFramedBatch(&triangleFanBatch);
break;
}
//还原到以前的模型视图矩阵(单位矩阵)
modelViewMatrix.PopMatrix();
// 进行缓冲区交换
glutSwapBuffers();
}
8.DrawWireFramedBatch
DrawWireFramedBatch 中的方法使用将在后续的文章中做补充说明。
void DrawWireFramedBatch(GLBatch* pBatch)
{
/*------------画绿色部分----------------*/
/* GLShaderManager 中的Uniform 值——平面着色器
参数1:平面着色器
参数2:运行为几何图形变换指定一个 4 * 4变换矩阵
--transformPipeline 变换管线(指定了2个矩阵堆栈)
参数3:颜色值
*/
shaderManager.UseStockShader(GLT_SHADER_FLAT, transformPipeline.GetModelViewProjectionMatrix(), vGreen);
pBatch->Draw();
/*-----------边框部分-------------------*/
/*
glEnable(GLenum mode); 用于启用各种功能。功能由参数决定
参数列表:http://blog.csdn.net/augusdi/article/details/23747081
注意:glEnable() 不能写在glBegin() 和 glEnd()中间
GL_POLYGON_OFFSET_LINE 根据函数glPolygonOffset的设置,启用线的深度偏移
GL_LINE_SMOOTH 执行后,过虑线点的锯齿
GL_BLEND 启用颜色混合。例如实现半透明效果
GL_DEPTH_TEST 启用深度测试 根据坐标的远近自动隐藏被遮住的图形(材料
glDisable(GLenum mode); 用于关闭指定的功能 功能由参数决定
*/
//画黑色边框
glPolygonOffset(-1.0f, -1.0f);// 偏移深度,在同一位置要绘制填充和边线,会产生z冲突,所以要偏移
glEnable(GL_POLYGON_OFFSET_LINE);
// 画反锯齿,让黑边好看些
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
//绘制线框几何黑色版 三种模式,实心,边框,点,可以作用在正面,背面,或者两面
//通过调用glPolygonMode将多边形正面或者背面设为线框模式,实现线框渲染
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
//设置线条宽度
glLineWidth(2.5f);
/* GLShaderManager 中的Uniform 值——平面着色器
参数1:平面着色器
参数2:运行为几何图形变换指定一个 4 * 4变换矩阵
--transformPipeline.GetModelViewProjectionMatrix() 获取的
GetMatrix函数就可以获得矩阵堆栈顶部的值
参数3:颜色值(黑色)
*/
shaderManager.UseStockShader(GLT_SHADER_FLAT, transformPipeline.GetModelViewProjectionMatrix(), vBlack);
pBatch->Draw();
// 复原原本的设置
//通过调用glPolygonMode将多边形正面或者背面设为全部填充模式
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glDisable(GL_POLYGON_OFFSET_LINE);
glLineWidth(1.0f);
glDisable(GL_BLEND);
glDisable(GL_LINE_SMOOTH);
}