[设计模式学习笔记]一、OOP七大设计原则

264 阅读18分钟

设计模式概述

设计模式是什么?

定义:软件工程中,设计模式(design pattern)是对软件设计中普遍存在(反复出现)的各种问题,所提出的解决方案。

换句话说,设计模式就好比是解决问题的各种模板,针对不同的问题(前大佬们已经遇到并且用良好的方式解决了的问题),的一些良好的解决方案。当我们再次遇到这些问题时,我们可以直接借鉴大佬们良好的解决方案,不用再自己去苦思冥想。 时间久了,大家也就把这样一些方案聚拢到一起,变成业内通用的一套“23种常用的设计模式”,良好的解决问题的同时还能提升代码的可读性。

设计模式的目的

编写软件过程中,程序员面临着来自耦合性内聚性以及可维护性可扩展性重用性灵活性等多方面的 挑战,设计模式是为了让程序(软件),具有更好的:

  1. 代码重用性

    相同功能的代码,不用多次编写,避免Ctrl+CV化工程

  2. 可读性

    编程规范性, 便于其他程序员的阅读和理解,比如你类名中用了Factory,别人自然而然想到工厂模式

  3. 可扩展性

    当需要增加新的功能时,非常的方便,也称为可维护,也就是随着功能的扩展,系统不会高耦合揉成一团

  4. 可靠性

    当我们增加新的功能后,对原来的功能没有影响

  5. 使程序呈现高内聚低耦合的特性

设计模式七大原则

设计模式原则,其实就是程序员在编程时,应当遵守的原则,也是设计各种“设计模式”的原则(即:设计模式为什么 这样设计的依据)

设计模式常用的七大原则有:

  1. 单一职责原则

  2. 接口隔离原则

  3. 依赖倒转(倒置)原则

  4. 里氏替换原则

  5. 开闭原则

  6. 迪米特法则

  7. 合成复用原则

1. 单一职责原则

1.1 基本介绍

对类来说的,即一个类应该只负责一项职责,比如UserDao类,只负责user表的CRUD。

如类A负责两个不同职责:职责 1,职责 2。当职责 1 需求变更而改变A时,可能造成职责 2 执行错误,所以需要将类A的粒度分解为A1,A2,也就是将A类分解为A1,A2两个类。 比如让一个CommonDao同时负责user表和order表的CRUD,这样就不符合单一职责原则,应该吧CommonDao分为UserDao和OrderDao这两个类。

1.2 应用举例

方式一:违反单一职责原则

public class SingleResponsibility1 {
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Vehicle vehicle = new Vehicle();
		vehicle.run("摩托车");
		vehicle.run("汽车");
		vehicle.run("飞机");
	}
}

// 交通工具类
// 方式1
// 1. 在方式1 的run方法中,违反了单一职责原则
// 2. 解决的方案非常的简单,根据交通工具运行方法不同,分解成不同类即可
class Vehicle {
	public void run(String vehicle) {
		System.out.println(vehicle + " 在公路上运行....");
	}
}

运行结果:发现所有交通工具都是“在公路上运行”,一个Vehicle类的run方法又管地上跑的,又管天上飞的,违反单一职责原则。

方式二:将类分解

将一个Vehicle类分解为RoadVehicle,AirVehicle,WaterVehicle。

//方案2的分析
//1. 遵守单一职责原则
//2. 但是这样做的改动很大,即将类分解,同时修改客户端
//3. 改进:直接修改Vehicle 类,改动的代码会比较少=>方案3
public class SingleResponsibility2 {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		RoadVehicle roadVehicle = new RoadVehicle();
		roadVehicle.run("摩托车");
		roadVehicle.run("汽车");
		
		AirVehicle airVehicle = new AirVehicle();
		
		airVehicle.run("飞机");
	}
}

class RoadVehicle {
	public void run(String vehicle) {
		System.out.println(vehicle + "公路运行");
	}
}

class AirVehicle {
	public void run(String vehicle) {
		System.out.println(vehicle + "天空运行");
	}
}

class WaterVehicle {
	public void run(String vehicle) {
		System.out.println(vehicle + "水中运行");
	}
}

此方案虽符合单一职责原则,但改动过大,可以只修改方法。

方案三:将方法分解

//方式3的分析
//1. 这种修改方法没有对原来的类做大的修改,只是增加方法
//2. 这里虽然没有在类这个级别上遵守单一职责原则,但是在方法级别上,仍然是遵守单一职责
public class SingleResponsibility3 {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Vehicle2 vehicle2  = new Vehicle2();
		vehicle2.run("汽车");
		vehicle2.runWater("轮船");
		vehicle2.runAir("飞机");
	}

}

class Vehicle2 {
	public void run(String vehicle) {
		//处理
		
		System.out.println(vehicle + " 在公路上运行....");
		
	}
	
	public void runAir(String vehicle) {
		System.out.println(vehicle + " 在天空上运行....");
	}
	
	public void runWater(String vehicle) {
		System.out.println(vehicle + " 在水中行....");
	}

}

1.3 单一职责原则总结

  • 降低类的复杂度,一个类只负责一项职责。

  • 提高类的可读性,可维护性

  • 降低变更引起的风险

  • 通常情况下,我们应当遵守单一职责原则,只有逻辑足够简单,才可以在代码级违反单一职责原则;只有类中 方法数量足够少,可以在方法级别保持单一职责原则

2. 接口隔离原则

2.1 基本介绍

接口隔离原则:客户端不应该依赖它不需要的接口,即一个类对另一个类的依赖应该建立在最小的接口上。

例子:看图

类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,如果接口 Interface1 对于类 A 和类 C 来说不是最小接口,那么类 B 和类D必须去实现他们不需要的方法。

按隔离原则应当这样处理: 将接口Interface1拆分为独立的几个接口(这里我们拆分成 3 个接口),类A和类C分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则

如果上面有点绕,看不懂,直接看下面代码↓

2.2 应用实例

方式一:

public class Segregation1 {
	public static void main(String[] args) {
		// TODO Auto-generated method stub
        A a = new A();
		a.depend1(new B()); // A类通过接口去依赖B类
		a.depend2(new B());
		a.depend3(new B());

		C c = new C();
		c.depend1(new D()); // C类通过接口去依赖(使用)D类
		c.depend4(new D());
		c.depend5(new D());
	}
}

//接口
interface Interface1 {
	void operation1();
	void operation2();
	void operation3();
	void operation4();
	void operation5();
}

// B类必须实现接口中的所有方法
class B implements Interface1 {
	public void operation1() {
		System.out.println("B 实现了 operation1");
	}
	public void operation2() {
		System.out.println("B 实现了 operation2");
	}
	public void operation3() {
		System.out.println("B 实现了 operation3");
	}
	public void operation4() {
		System.out.println("B 实现了 operation4");
	}
	public void operation5() {
		System.out.println("B 实现了 operation5");
	}
}

//D类也必须实现接口中的所有方法
class D implements Interface1 {
	public void operation1() {
		System.out.println("D 实现了 operation1");
	}
	public void operation2() {
		System.out.println("D 实现了 operation2");
	}
	public void operation3() {
		System.out.println("D 实现了 operation3");
	}
	public void operation4() {
		System.out.println("D 实现了 operation4");
	}
	public void operation5() {
		System.out.println("D 实现了 operation5");
	}
}

class A { //然而 A 类通过接口Interface1 依赖(使用) B类,但是只会用到1,2,3方法,导致45方法多余
	public void depend1(Interface1 i) {
		i.operation1();
	}
	public void depend2(Interface1 i) {
		i.operation2();
	}
	public void depend3(Interface1 i) {
		i.operation3();
	}
}
  
class C { //C 类通过接口Interface1 依赖(使用) D类,但是只会用到1,4,5方法,导致23方法多余
	public void depend1(Interface1 i) {
		i.operation1();
	}
	public void depend4(Interface1 i) {
		i.operation4();
	}
	public void depend5(Interface1 i) {
		i.operation5();
	}
}

方式二:改进

  • 类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,如果接口 Interface1 对于类 A 和类 C 来说不是最小接口,那么类 B 和类D必须去实现他们不需要的方法

  • 将接口 Interface1 拆分为独立的几个接口,类A和类 C 分别与他们需要的接口建立依赖关系。也就是采用接口 隔离原则

  • 接口 Interface1 中出现的方法,根据实际情况拆分为三个接口

public class Segregation1 {
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		// 使用一把
		A a = new A();
		a.depend1(new B()); // A类通过接口去依赖B类
		a.depend2(new B());
		a.depend3(new B());

		C c = new C();
		c.depend1(new D()); // C类通过接口去依赖(使用)D类
		c.depend4(new D());
		c.depend5(new D());
	}
}
// 接口1
interface Interface1 {
	void operation1();
}
// 接口2
interface Interface2 {
	void operation2();
	void operation3();
}
// 接口3
interface Interface3 {
	void operation4();
	void operation5();
}

class B implements Interface1, Interface2 {
	public void operation1() {
		System.out.println("B 实现了 operation1");
	}
	public void operation2() {
		System.out.println("B 实现了 operation2");
	}
	public void operation3() {
		System.out.println("B 实现了 operation3");
	}
}

class D implements Interface1, Interface3 {
	public void operation1() {
		System.out.println("D 实现了 operation1");
	}
	public void operation4() {
		System.out.println("D 实现了 operation4");
	}
	public void operation5() {
		System.out.println("D 实现了 operation5");
	}
}

class A { // A 类通过接口Interface1,Interface2 依赖(使用) B类,但是只会用到1,2,3方法
	public void depend1(Interface1 i) {
		i.operation1();
	}
	public void depend2(Interface2 i) {
		i.operation2();
	}
	public void depend3(Interface2 i) {
		i.operation3();
	}
}

class C { // C 类通过接口Interface1,Interface3 依赖(使用) D类,但是只会用到1,4,5方法
	public void depend1(Interface1 i) {
		i.operation1();
	}
	public void depend4(Interface3 i) {
		i.operation4();
	}
	public void depend5(Interface3 i) {
		i.operation5();
	}
}

3. 依赖倒置原则

3.1 基本介绍

依赖倒置原则(Dependence Inversion Principle)是指:

  1. 高层模块不应该依赖低层模块,二者都应该依赖其抽象

  2. 抽象不应该依赖细节,细节应该依赖抽象

  3. 依赖倒转(倒置)的中心思想是面向接口编程

  4. 依赖倒转原则是基于这样的设计理念:相对于细节的多变性,抽象的东西要稳定的多。以抽象为基础搭建的架 构比以细节为基础的架构要稳定的多。在 java 中,抽象指的是接口或抽象类,细节就是具体的实现类

  5. 使用接口或抽象类的目的是制定好规范,而不涉及任何具体的操作,把展现细节的任务交给他们的实现类去完 成

(注意:此处的Dependence Inversion Principle依赖倒置原则Dependency Injection依赖注入是两个不同的思想)

3.2 应用实例

方式一:

public class DependecyInversion {
	public static void main(String[] args) {
		Person person = new Person();
		person.receive(new Email());
	}
}

class Email {
	public String getInfo() {
		return "电子邮件信息: hello,world";
	}
}
//完成Person接收消息的功能
//方式1分析
//1. 简单,比较容易想到
//2. 如果我们获取的对象是 微信,短信等等,则新增类,同时Perons也要增加相应的接收方法,可扩展性低
//3. 解决思路:引入一个抽象的接口IReceiver, 表示接收者, 这样Person类与接口IReceiver发生依赖,
//   因为Email, WeiXin 等等属于接收的范围,他们各自实现IReceiver 接口就ok, 这样我们就符号依赖倒转原则
class Person {
	public void receive(Email email ) {
		System.out.println(email.getInfo());
	}
}

方式二:运用依赖倒置

public class DependecyInversion {
	public static void main(String[] args) {
		//客户端无需改变
		Person person = new Person();
		person.receive(new Email());
		person.receive(new WeiXin());
	}

}

//定义接口
interface IReceiver {
	public String getInfo();
}

class Email implements IReceiver {
	public String getInfo() {
		return "电子邮件信息: hello,world";
	}
}

//增加微信
class WeiXin implements IReceiver {
	public String getInfo() {
		return "微信信息: hello,ok";
	}
}

//方式2
class Person {
	//这里我们是对接口的依赖
	public void receive(IReceiver receiver ) {
		System.out.println(receiver.getInfo());
	}
}

4. 里氏替换原则

里氏替换原则帮我们规定了如何正确的使用继承关系

4.1 基本介绍

  1. 如果对每个类型为 T1 的对象 o1,都有类型为 T2 的对象 o2,使得以 T1 定义的所有程序 P 在所有的对象 o1 都 代换成 o2 时,程序 P 的行为没有发生变化,那么类型T2 是类型 T1 的子类型。换句话说,所有引用基类的地方必须能透明地使用其子类的对象
  2. 在使用继承时,遵循里氏替换原则,在子类中尽量不要重写父类的方法
  3. 里氏替换原则告诉我们,继承实际上让两个类耦合性增强了,在适当的情况下,可以通过聚合,组合,依赖 来 解决问题

4.2 应用实例

public class Liskov {
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		A a = new A();
		System.out.println("11-3=" + a.func1(11, 3));
		System.out.println("1-8=" + a.func1(1, 8));

		System.out.println("-----------------------");
		B b = new B();
		System.out.println("11-3=" + b.func1(11, 3));//这里本意是求出11-3
		System.out.println("1-8=" + b.func1(1, 8));// 1-8
		System.out.println("11+3+9=" + b.func2(11, 3));
	}
}

// A类
class A {
	// 返回两个数的差
	public int func1(int num1, int num2) {
		return num1 - num2;
	}
}

// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends A {
	//这里,重写了A类的方法, 可能是无意识的
	public int func1(int a, int b) {
		return a + b;
	}

	public int func2(int a, int b) {
		return func1(a, b) + 9;
	}
}

我们发现原来运行正常的相减功能发生了错误。原因就是类 B 无意中重写了父类的方法,造成原有功能出现错误。在实际编程中,我们常常会通过重写父类的方法完成新的功能,这样写起来虽然简单,但整个继承体系的复用性会比较差。特别是运行多态比较频繁的时候

解决办法就是:原来的父类和子类都继承一个更通俗的基类,原有的继承关系去掉,采用依赖,聚合,组合等 关系代替.

package com.atguigu.principle.liskov.improve;

public class Liskov {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		A a = new A();
		System.out.println("11-3=" + a.func1(11, 3));
		System.out.println("1-8=" + a.func1(1, 8));
        
		System.out.println("-----------------------");
		B b = new B();
		//因为B类不再继承A类,因此调用者,不会再func1是求减法
		//调用完成的功能就会很明确
		System.out.println("11+3=" + b.func1(11, 3));//这里本意是求出11+3
		System.out.println("1+8=" + b.func1(1, 8));// 1+8
		System.out.println("11+3+9=" + b.func2(11, 3));
        
		//使用组合仍然可以使用到A类相关方法
		System.out.println("11-3=" + b.func3(11, 3));// 这里本意是求出11-3
	}
}

//创建一个更加基础的基类
class Base {
	//把更加基础的方法和成员写到Base类
}

// A类
class A extends Base {
	// 返回两个数的差
	public int func1(int num1, int num2) {
		return num1 - num2;
	}
}

// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends Base {
	//如果B需要使用A类的方法,使用组合关系
	private A a = new A();
	
	//这里,重写了A类的方法, 可能是无意识
	public int func1(int a, int b) {
		return a + b;
	}

	public int func2(int a, int b) {
		return func1(a, b) + 9;
	}
	
	//我们仍然想使用A的方法
	public int func3(int a, int b) {
		return this.a.func1(a, b);
	}
}

5. 开闭原则

5.1 基本介绍

  1. 开闭原则(Open Closed Principle)是编程中最基础、最重要的设计原则
  2. 一个软件实体如类,模块和函数应该对扩展开放(对提供方),对修改关闭(对使用方)。用抽象构建框架,用实现扩展细节。
  3. 当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来实现变化。
  4. 编程中遵循其它原则,以及使用设计模式的目的就是遵循开闭原则。

5.2 应用实例

public class Ocp {

	public static void main(String[] args) {
		//使用看看存在的问题
		GraphicEditor graphicEditor = new GraphicEditor();
		graphicEditor.drawShape(new Rectangle());
		graphicEditor.drawShape(new Circle());
		graphicEditor.drawShape(new Triangle());
	}

}

//这是一个用于绘图的类 [使用方]
class GraphicEditor {
	//接收Shape对象,然后根据type,来绘制不同的图形
	public void drawShape(Shape s) {
		if (s.m_type == 1)
			drawRectangle(s);
		else if (s.m_type == 2)
			drawCircle(s);
		else if (s.m_type == 3)
			drawTriangle(s);
	}

	//绘制矩形
	public void drawRectangle(Shape r) {
		System.out.println(" 绘制矩形 ");
	}

	//绘制圆形
	public void drawCircle(Shape r) {
		System.out.println(" 绘制圆形 ");
	}
	
	//绘制三角形
	public void drawTriangle(Shape r) {
		System.out.println(" 绘制三角形 ");
	}
}

//Shape类,基类
class Shape {
	int m_type;
}

class Rectangle extends Shape {
	Rectangle() {
		super.m_type = 1;
	}
}

class Circle extends Shape {
	Circle() {
		super.m_type = 2;
	}
}

//新增画三角形
class Triangle extends Shape {
	Triangle() {
		super.m_type = 3;
	}
}

此方法缺点是违反了设计模式的 ocp 原则,比如我们这时要新增加一个图形种类三角形,修改的地方较多

改进:把创建 Shape 类做成抽象类,并提供一个抽象的 draw方法,让子类去实现即可,这样我们有新的图形 种类时,只需要让新的图形类继承 Shape,并实现draw方法即可,使用方的代码就不需要修改,满足了开闭原则

public class Ocp {
	public static void main(String[] args) {
		//使用看看存在的问题
		GraphicEditor graphicEditor = new GraphicEditor();
		graphicEditor.drawShape(new Rectangle());
		graphicEditor.drawShape(new Circle());
		graphicEditor.drawShape(new Triangle());
		graphicEditor.drawShape(new OtherGraphic());
	}
}

//这是一个用于绘图的类 [使用方]
class GraphicEditor {
	//接收Shape对象,调用draw方法
	public void drawShape(Shape s) {
		s.draw();
	}
}

//Shape类,基类
abstract class Shape {
	int m_type;
	
	public abstract void draw();//抽象方法
}

class Rectangle extends Shape {
	Rectangle() {
		super.m_type = 1;
	}

	@Override
	public void draw() {
		// TODO Auto-generated method stub
		System.out.println(" 绘制矩形 ");
	}
}

class Circle extends Shape {
	Circle() {
		super.m_type = 2;
	}
	@Override
	public void draw() {
		// TODO Auto-generated method stub
		System.out.println(" 绘制圆形 ");
	}
}

//新增画三角形
class Triangle extends Shape {
	Triangle() {
		super.m_type = 3;
	}
	@Override
	public void draw() {
		// TODO Auto-generated method stub
		System.out.println(" 绘制三角形 ");
	}
}

//新增一个图形
class OtherGraphic extends Shape {
	OtherGraphic() {
		super.m_type = 4;
	}

	@Override
	public void draw() {
		// TODO Auto-generated method stub
		System.out.println(" 绘制其它图形 ");
	}
}

6. 迪米特法则

6.1 基本介绍

  1. 一个对象应该对其他对象保持最少的了解
  2. 类与类关系越密切,耦合度越大
  3. 迪米特法则(Demeter Principle)又叫最少知道原则,即一个类对自己依赖的类知道的越少越好。也就是说,对于被依赖的类不管多么复杂,都尽量将逻辑封装在类的内部。对外除了提供的 public 方法,不对外泄露任何信息
  4. 迪米特法则还有个更简单的定义:只与直接的朋友通信
  5. 直接的朋友:每个对象都会与其他对象有耦合关系,只要两个对象之间有耦合关系,我们就说这两个对象之间 是朋友关系。耦合的方式很多,依赖,关联,组合,聚合等。其中,我们称出现在成员变量方法参数方法返回值中的类为直接的朋友,而出现在局部变量中的类不是直接的朋友。也就是说,陌生的类最好不要以局部变量的形式出现在类的内部。

6.2 应用实例

有一个学校,下属有各个学院和总部,现要求打印出学校总部员工 ID和学院员工的 id, 编程实现上面的功能, 看代码演示

//客户端
public class Demeter1 {

	public static void main(String[] args) {
		//创建了一个 SchoolManager 对象
		SchoolManager schoolManager = new SchoolManager();
		//输出学院的员工id 和  学校总部的员工信息
		schoolManager.printAllEmployee(new CollegeManager());
	}
}

//学校总部员工类
class Employee {
	private String id;

	public void setId(String id) {
		this.id = id;
	}

	public String getId() {
		return id;
	}
}


//学院的员工类
class CollegeEmployee {
	private String id;

	public void setId(String id) {
		this.id = id;
	}

	public String getId() {
		return id;
	}
}


//管理学院员工的管理类
class CollegeManager {
	//返回学院的所有员工
	public List<CollegeEmployee> getAllEmployee() {
		List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
		for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list
			CollegeEmployee emp = new CollegeEmployee();
			emp.setId("学院员工id= " + i);
			list.add(emp);
		}
		return list;
	}
}

//学校管理类

//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则 
class SchoolManager {
	//返回学校总部的员工
	public List<Employee> getAllEmployee() {
		List<Employee> list = new ArrayList<Employee>();
		
		for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list
			Employee emp = new Employee();
			emp.setId("学校总部员工id= " + i);
			list.add(emp);
		}
		return list;
	}

	//该方法完成输出学校总部和学院员工信息(id)
	void printAllEmployee(CollegeManager sub) {
		
		//分析问题
		//1. 这里的 CollegeEmployee 不是  SchoolManager的直接朋友
		//2. CollegeEmployee 是以局部变量方式出现在 SchoolManager
		//3. 违反了 迪米特法则 
		
		//获取到学院员工
		List<CollegeEmployee> list1 = sub.getAllEmployee();
		System.out.println("------------学院员工------------");
		for (CollegeEmployee e : list1) {
			System.out.println(e.getId());
		}
		//获取到学校总部员工
		List<Employee> list2 = this.getAllEmployee();
		System.out.println("------------学校总部员工------------");
		for (Employee e : list2) {
			System.out.println(e.getId());
		}
	}
}
  • 前面设计的问题在于 SchoolManager 中,CollegeEmployee 类并不是 SchoolManager 类的直接朋友 (分析)
  • 按照迪米特法则,应该避免类中出现这样非直接朋友关系的耦合
  • 对代码按照迪米特法则 进行改进.
//客户端
public class Demeter1 {
	public static void main(String[] args) {
		System.out.println("~~~使用迪米特法则的改进~~~");
		//创建了一个 SchoolManager 对象
		SchoolManager schoolManager = new SchoolManager();
		//输出学院的员工id 和  学校总部的员工信息
		schoolManager.printAllEmployee(new CollegeManager());
	}
}

//学校总部员工类
class Employee {
	private String id;

	public void setId(String id) {
		this.id = id;
	}
	public String getId() {
		return id;
	}
}

//学院的员工类
class CollegeEmployee {
	private String id;

	public void setId(String id) {
		this.id = id;
	}
	public String getId() {
		return id;
	}
}

//管理学院员工的管理类
class CollegeManager {
	//返回学院的所有员工
	public List<CollegeEmployee> getAllEmployee() {
		List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
		for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list
			CollegeEmployee emp = new CollegeEmployee();
			emp.setId("学院员工id= " + i);
			list.add(emp);
		}
		return list;
	}
	
	//输出学院员工的信息
	public void printEmployee() {
		//获取到学院员工
		List<CollegeEmployee> list1 = getAllEmployee();
		System.out.println("------------学院员工------------");
		for (CollegeEmployee e : list1) {
			System.out.println(e.getId());
		}
	}
}

//学校管理类
//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则 
class SchoolManager {
	//返回学校总部的员工
	public List<Employee> getAllEmployee() {
		List<Employee> list = new ArrayList<Employee>();
		
		for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list
			Employee emp = new Employee();
			emp.setId("学校总部员工id= " + i);
			list.add(emp);
		}
		return list;
	}

	//该方法完成输出学校总部和学院员工信息(id)
	void printAllEmployee(CollegeManager sub) {
		
		//分析问题
		//1. 将输出学院的员工方法,封装到CollegeManager
		sub.printEmployee();
	
		//获取到学校总部员工
		List<Employee> list2 = this.getAllEmployee();
		System.out.println("------------学校总部员工------------");
		for (Employee e : list2) {
			System.out.println(e.getId());
		}
	}
}

7. 合成复用原则

7.1 基本介绍

合成复用原则是尽量使用合成/聚合的方式,而不是使用继承。

8. 设计原则核心思想

  • 找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起。
  • 针对接口编程,而不是针对实现编程。
  • 为了交互对象之间的松耦合设计而努力

参考: 尚硅谷Java设计模式:www.bilibili.com/video/BV1G4…