ThreadPoolExecutor 源码解析
整体架构图
核心参数
- corePoolSize:核心池的大小,这个参数跟线程池的实现原理有非常大的关系。在创建了线程池后,默认情况下,线程池中并没有任何线程,而是等待有任务到来才创建线程去执行任务,除非调用了prestartAllCoreThreads()或者prestartCoreThread()方法,从这2个方法的名字就可以看出,是预创建线程的意思,即在没有任务到来之前就创建corePoolSize个线程或者一个线程。默认情况下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中;
- maximumPoolSize:线程池最大线程数,这个参数也是一个非常重要的参数,它表示在线程池中最多能创建多少个线程;
- keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0;
- unit:参数keepAliveTime的时间单位
- workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择也很重要,会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种选择
- ArrayBlockingQueue
- LinkedBlockingQueue
- SynchronousQueue
- handler:表示当拒绝处理任务时的策略,有以下四种取值
- ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常
- ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常
- ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
- ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务
Worker
// 线程池中任务执行的最小单元
// Worker 继承 AQS,具有锁功能
// Worker 实现 Runnable,本身是一个可执行的任务
private final class Workerextends AbstractQueuedSynchronizer implements Runnable
{
private static final long serialVersionUID = 6138294804551838833L;
// 任务运行的线程
final Thread thread;
// 需要执行的任务
Runnable firstTask;
volatile long completedTasks;
// 非常巧妙的设计,Worker本身是个 Runnable,把自己作为任务传递给 thread
// 内部有个属性又设置了 Runnable
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
// 把 Worker 自己作为 thread 运行的任务
this.thread = getThreadFactory().newThread(this);
}
//Worker 本身是 Runnable,run 方法是 Worker 执行的入口, runWorker 是外部的方法
public void run() {
runWorker(this);
}
// Lock methods
// 0 代表没有锁住,1 代表锁住
protected boolean isHeldExclusively() {
return getState() != 0;
}
protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
}
public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); }
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
-
Worker 很像是任务的代理,在线程池中,最小的执行单位就是 Worker,所以 Worker 实现了 Runnable 接口,实现了 run 方法
-
在 Worker 初始化时
this.thread = getThreadFactory().newThread (this)这行代码比较关键,它把当前 Worker 作为线程的构造器入参,我们在后续的实现中会发现这样的代码:Thread t = w.thread; t.start (),此时的 w 是 Worker 的引用申明,此处 t.start 实际上执行的就是 Worker 的 run 方法 -
Worker 本身也实现了 AQS,所以其本身也是一个锁,其在执行任务的时候,会锁住自己,任务执行完成之后,会释放自己
线程池的任务提交
线程池的任务提交从 submit 方法说起,submit 方法是 AbstractExecutorService 抽象类定义的,主要做了两件事情:
- 把 Runnable 和 Callable 都转化成 FutureTask
- 使用 execute 方法执行 FutureTask
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
// 工作的线程小于核心线程数,创建新的线程,成功返回,失败不抛异常
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
// 线程池状态可能发生变化
c = ctl.get();
}
// 工作的线程大于等于核心线程数,或者新建线程失败
// 线程池状态正常,并且可以入队的话,尝试入队列
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
// 如果线程池状态异常 尝试从队列中移除任务,可以移除的话就拒绝掉任务
if (!isRunning(recheck) && remove(command))
reject(command);
// 发现可运行的线程数是 0,就初始化一个线程,这里是个极限情况,入队的时候,突然发现可用线程都被回收了
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
addWorker 方法的作用是新建一个 Worker
// 结合线程池的情况看是否可以添加新的 worker
// firstTask 不为空可以直接执行,为空执行不了,Thread.run()方法有判断,Runnable为空不执行
// core 为 true 表示线程最大新增个数是 coresize,false 表示最大新增个数是 maxsize
// 返回 true 代表成功,false 失败
// break retry 跳到retry处,且不再进入循环
// continue retry 跳到retry处,且再次进入循环
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
// 工作中的线程数大于等于容量,或者大于等于 coreSize or maxS
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
// break 结束 retry 的 for 循环
break retry;
c = ctl.get();
// 线程池状态被更改
if (runStateOf(c) != rs)
continue retry;
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
// 巧妙的设计,Worker 本身是个 Runnable.
// 在初始化的过程中,会把 worker 丢给 thread 去初始化
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
// 启动线程,实际上去执行 Worker.run() 方法
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
addWorker 方法首先是执行了一堆校验,然后使用 new Worker (firstTask) 新建了 Worker,最后使用 t.start () 执行 Worker,上文我们说了 Worker 在初始化时的关键代码:this.thread= getThreadFactory ().newThread (this),Worker(this) 是作为新建线程的构造器入参的,所以 t.start () 会执行到 Worker 的 run 方法上
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
// task 为空的情况:
// 1:任务入队列了,极限情况下,发现没有运行的线程,于是新增一个线程;
// 2:线程执行完任务执行,再次回到 while 循环。
// 如果 task 为空,会使用 getTask 方法阻塞从队列中拿数据,如果拿不到数据,会阻塞住
while (task != null || (task = getTask()) != null) {
w.lock();
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
//执行 before 钩子函数
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
//执行 after 钩子函数,如果这里抛出异常,会覆盖 catch 的异常
//所以这里异常最好不要抛出来
afterExecute(task, thrown);
}
} finally {
//任务执行完成,计算解锁
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
线程执行完任务之后都在干啥
这个 while 循环有个 getTask 方法,getTask 的主要作用是阻塞从队列中拿任务出来,如果队列中有任务,那么就可以拿出来执行,如果队列中没有任务,这个线程会一直阻塞到有任务为止(或者超时阻塞),下面我们一起来看下 getTask 方法,源码如下:
// 从阻塞队列中拿任务
private Runnable getTask() {
boolean timedOut = false;
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
//线程池关闭 && 队列为空,不需要在运行了,直接放回
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// true 运行的线程数大于 coreSize || 核心线程也可以被灭亡
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
// 队列以 LinkedBlockingQueue 为例,timedOut 为 true 的话说明下面 poll 方法执行返回的是
// 说明在等待 keepAliveTime 时间后,队列中仍然没有数据
// 说明此线程已经空闲了 keepAliveTime 了
// 再加上 wc > 1 || workQueue.isEmpty() 的判断
// 所以使用 compareAndDecrementWorkerCount 方法使线程池数量减少 1
// 并且直接 return,return 之后,此空闲的线程会自动被回收
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
- 使用队列的 poll 或 take 方法从队列中拿数据,根据队列的特性,队列中有任务可以返回,队列中无任务会阻塞
- 方法中的第二个 if 判断,说的是在满足一定条件下(条件看注释),会减少空闲的线程,减少的手段是使可用线程数减一,并且直接 return,直接 return 后,该线程就执行结束了,JVM 会自动回收该线程
面试题
如果我想在线程池任务执行之前和之后,做一些资源清理的工作,可以么,如何做
可 以 的 , ThreadPoolExecutor 提 供 了 一 些 钩 子 函 数 , 我 们 只 需 要 继 承ThreadPoolExecutor 并实现这些钩子函数即可。在线程池任务执行之前实现 beforeExecute方法,执行之后实现 afterExecute 方法
说说你对线程池的理解
- ThreadPoolExecutor 类结构;
- ThreadPoolExecutor coreSize、maxSize 等重要属性;
- Worker 的重要作用;
- submit 的整个过程