为什么用分布式锁?
基于Redis实现分布式锁
// 获取锁// NX是指如果key不存在就成功,key存在返回false,PX可以指定过期时间SET anyLock unique_value NX PX 30000// 释放锁:通过执行一段lua脚本// 释放锁涉及到两条指令,这两条指令不是原子性的// 需要用到redis的lua脚本支持特性,redis执行lua脚本是原子性的if redis.call("get",KEYS[1]) == ARGV[1] thenreturn redis.call("del",KEYS[1])elsereturn 0end一定要用SET key value NX PX milliseconds 命令
如果不用,先设置了值,再设置过期时间,这个不是原子性操作,有可能在设置过期时间之前宕机,会造成死锁(key永久存在)
value要具有唯一性
这个是为了在解锁的时候,需要验证value是和加锁的一致才删除key。
这是避免了一种情况:假设A获取了锁,过期时间30s,此时35s之后,锁已经自动释放了,A去释放锁,但是此时可能B获取了锁。A客户端就不能删除B的锁了。
单机模式
master-slave + sentinel选举模式
redis cluster模式
获取当前时间戳,单位是毫秒
轮流尝试在每个master节点上创建锁,过期时间设置较短,一般就几十毫秒
尝试在大多数节点上建立一个锁,比如5个节点就要求是3个节点(n / 2 +1)
客户端计算建立好锁的时间,如果建立锁的时间小于超时时间,就算建立成功了
要是锁建立失败了,那么就依次删除这个锁
只要别人建立了一把分布式锁,你就得不断轮询去尝试获取锁
另一种方式:Redisson
SET anyLock unique_value NX PX 30000
Config config = new Config();config.useClusterServers().addNodeAddress("redis://192.168.31.101:7001").addNodeAddress("redis://192.168.31.101:7002").addNodeAddress("redis://192.168.31.101:7003").addNodeAddress("redis://192.168.31.102:7001").addNodeAddress("redis://192.168.31.102:7002").addNodeAddress("redis://192.168.31.102:7003");RedissonClient redisson = Redisson.create(config);RLock lock = redisson.getLock("anyLock");lock.lock();lock.unlock();redisson所有指令都通过lua脚本执行,redis支持lua脚本原子性执行
redisson设置一个key的默认过期时间为30s,如果某个客户端持有一个锁超过了30s怎么办?
redisson中有一个
watchdog的概念,翻译过来就是看门狗,它会在你获取锁之后,每隔10秒帮你把key的超时时间设为30s这样的话,就算一直持有锁也不会出现key过期了,其他线程获取到锁的问题了。
redisson的“看门狗”逻辑保证了没有死锁发生。
(如果机器宕机了,看门狗也就没了。此时就不会延长key的过期时间,到了30s之后就会自动过期了,其他线程可以获取到锁)

// 加锁逻辑private <T> RFuture<Long> tryAcquireAsync(long leaseTime, TimeUnit unit, final long threadId) { if (leaseTime != -1) { return tryLockInnerAsync(leaseTime, unit, threadId, RedisCommands.EVAL_LONG); } // 调用一段lua脚本,设置一些key、过期时间 RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(), TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG); ttlRemainingFuture.addListener(new FutureListener<Long>() { @Override public void operationComplete(Future<Long> future) throws Exception { if (!future.isSuccess()) { return; } Long ttlRemaining = future.getNow(); // lock acquired if (ttlRemaining == null) { // 看门狗逻辑 scheduleExpirationRenewal(threadId); } } }); return ttlRemainingFuture;}<T> RFuture<T> tryLockInnerAsync(long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) { internalLockLeaseTime = unit.toMillis(leaseTime); return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command, "if (redis.call('exists', KEYS[1]) == 0) then " + "redis.call('hset', KEYS[1], ARGV[2], 1); " + "redis.call('pexpire', KEYS[1], ARGV[1]); " + "return nil; " + "end; " + "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " + "redis.call('hincrby', KEYS[1], ARGV[2], 1); " + "redis.call('pexpire', KEYS[1], ARGV[1]); " + "return nil; " + "end; " + "return redis.call('pttl', KEYS[1]);", Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId));}// 看门狗最终会调用了这里private void scheduleExpirationRenewal(final long threadId) { if (expirationRenewalMap.containsKey(getEntryName())) { return; } // 这个任务会延迟10s执行 Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() { @Override public void run(Timeout timeout) throws Exception { // 这个操作会将key的过期时间重新设置为30s RFuture<Boolean> future = renewExpirationAsync(threadId); future.addListener(new FutureListener<Boolean>() { @Override public void operationComplete(Future<Boolean> future) throws Exception { expirationRenewalMap.remove(getEntryName()); if (!future.isSuccess()) { log.error("Can't update lock " + getName() + " expiration", future.cause()); return; } if (future.getNow()) { // reschedule itself // 通过递归调用本方法,无限循环延长过期时间 scheduleExpirationRenewal(threadId); } } }); } }, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS); if (expirationRenewalMap.putIfAbsent(getEntryName(), new ExpirationEntry(threadId, task)) != null) { task.cancel(); }}另外,redisson还提供了对redlock算法的支持,它的用法也很简单:RedissonClient redisson = Redisson.create(config);RLock lock1 = redisson.getFairLock("lock1");RLock lock2 = redisson.getFairLock("lock2");RLock lock3 = redisson.getFairLock("lock3");RedissonRedLock multiLock = new RedissonRedLock(lock1, lock2, lock3);multiLock.lock();multiLock.unlock();小结:本节分析了使用redis作为分布式锁的具体落地方案以及其一些局限性然后介绍了一个redis的客户端框架redisson,这也是我推荐大家使用的,比自己写代码实现会少care很多细节。基于zookeeper实现分布式锁
有序节点:假如当前有一个父节点为
/lock,我们可以在这个父节点下面创建子节点;zookeeper提供了一个可选的有序特性,例如我们可以创建子节点“/lock/node-”并且指明有序,那么zookeeper在生成子节点时会根据当前的子节点数量自动添加整数序号
也就是说,如果是第一个创建的子节点,那么生成的子节点为
/lock/node-0000000000,下一个节点则为/lock/node-0000000001,依次类推。临时节点:客户端可以建立一个临时节点,在会话结束或者会话超时后,zookeeper会自动删除该节点。
事件监听:在读取数据时,我们可以同时对节点设置事件监听,当节点数据或结构变化时,zookeeper会通知客户端。当前zookeeper有如下四种事件:
节点创建
节点删除
节点数据修改
子节点变更
使用zk的临时节点和有序节点,每个线程获取锁就是在zk创建一个临时有序的节点,比如在/lock/目录下。
创建节点成功后,获取/lock目录下的所有临时节点,再判断当前线程创建的节点是否是所有的节点的序号最小的节点
如果当前线程创建的节点是所有节点序号最小的节点,则认为获取锁成功。
如果当前线程创建的节点不是所有节点序号最小的节点,则对节点序号的前一个节点添加一个事件监听。
比如当前线程获取到的节点序号为
/lock/003,然后所有的节点列表为[/lock/001,/lock/002,/lock/003],则对/lock/002这个节点添加一个事件监听器。
/lock/001释放了,/lock/002监听到时间,此时节点集合为[/lock/002,/lock/003],则/lock/002为最小序号节点,获取到锁。
Curator介绍
InterProcessMutex interProcessMutex = new InterProcessMutex(client,"/anyLock");interProcessMutex.acquire();interProcessMutex.release();private boolean internalLockLoop(long startMillis, Long millisToWait, String ourPath) throws Exception{ boolean haveTheLock = false; boolean doDelete = false; try { if ( revocable.get() != null ) { client.getData().usingWatcher(revocableWatcher).forPath(ourPath); } while ( (client.getState() == CuratorFrameworkState.STARTED) && !haveTheLock ) { // 获取当前所有节点排序后的集合 List<String> children = getSortedChildren(); // 获取当前节点的名称 String sequenceNodeName = ourPath.substring(basePath.length() + 1); // +1 to include the slash // 判断当前节点是否是最小的节点 PredicateResults predicateResults = driver.getsTheLock(client, children, sequenceNodeName, maxLeases); if ( predicateResults.getsTheLock() ) { // 获取到锁 haveTheLock = true; } else { // 没获取到锁,对当前节点的上一个节点注册一个监听器 String previousSequencePath = basePath + "/" + predicateResults.getPathToWatch(); synchronized(this){ Stat stat = client.checkExists().usingWatcher(watcher).forPath(previousSequencePath); if ( stat != null ){ if ( millisToWait != null ){ millisToWait -= (System.currentTimeMillis() - startMillis); startMillis = System.currentTimeMillis(); if ( millisToWait <= 0 ){ doDelete = true; // timed out - delete our node break; } wait(millisToWait); }else{ wait(); } } } // else it may have been deleted (i.e. lock released). Try to acquire again } } } catch ( Exception e ) { doDelete = true; throw e; } finally{ if ( doDelete ){ deleteOurPath(ourPath); } } return haveTheLock;}
两种方案的优缺点比较
它获取锁的方式简单粗暴,获取不到锁直接不断尝试获取锁,比较消耗性能。
另外来说的话,redis的设计定位决定了它的数据并不是强一致性的,在某些极端情况下,可能会出现问题。锁的模型不够健壮
即便使用redlock算法来实现,在某些复杂场景下,也无法保证其实现100%没有问题,关于redlock的讨论可以看How to do distributed locking
redis分布式锁,其实需要自己不断去尝试获取锁,比较消耗性能。
zookeeper天生设计定位就是分布式协调,强一致性。锁的模型健壮、简单易用、适合做分布式锁。
如果获取不到锁,只需要添加一个监听器就可以了,不用一直轮询,性能消耗较小。