Apache Spark 3.0.0正式发布啦,Apache Spark 3.0是在Spark 2.x的基础上开发的,带来了新的想法和功能。
Spark是一个开源的大数据处理、数据科学、机器学习和数据分析工作负载的统一引擎,自2010年首次发布以来,已经成长为最活跃的开源项目之一;支持Java、Scala、Python、R等语言,并为这些语言提供了相关的SDK。
Spark 3.0中的Spark SQL是这个版本中最活跃的组件,46%的已解决的问题都是是针对Spark SQL的,包括结构化流和MLlib,以及高层API,包括SQL和DataFrames。在经过了大量优化后,Spark 3.0的性能比Spark 2.4快了大约2倍。
Python是目前Spark上使用最广泛的语言;针对Python语言提供的PySpark在PyPI上的月下载量超过500万。在Spark 3.0中,对PySpark的功能和可用性做了不少改进,包括用Python类型提示重新设计pandas UDF API,新的pandas UDF类型,以及更多的Pythonic错误处理。
以下便是Spark 3.0中的功能亮点:包括自适应查询执行,动态分区修剪,ANSI SQL合规性,pandas API的重大改进,结构化流的新UI,调用R用户定义函数的速度提高了40倍,加速器感知的调度器,以及SQL参考文档。
把这些功能按照模块来划分就可以分为以下几个模块:
core、Spark SQL、Structured StreamingMLlibSparkRGraphX- 放弃
Python 2和R 3.4以下的版的支持; - 修复一些已知的问题;
core、Spark SQL、Structured Streaming
突出功能
- 加速器感知调度器;
- 自适应查询;
- 动态分区修剪;
- 重新设计的
pandas UDF API与类型提示; - 结构化流用户界面;
- 目录插件
API的支持; - 支持
Java 11; - 支持
Hadoop 3; - 能够更好的兼容
ANSI SQL;
性能提升
- 自适应查询;
- 动态分区修剪;
- 优化
9项规则; - 最小化表缓存同步性能优化;
- 将聚合代码分割成小函数;
- 在
INSERT和ALTER TABLE ADD PARTITION命令中增加批处理; - 允许聚合器注册为
UDAF;
SQL兼容性增强
- 使用
Proleptic Gregorian日历; - 建立
Spark自己的日期时间模式定义; - 为表插入引入
ANSI存储分配策略; - 在表插入中默认遵循
ANSI存储分配规则; - 添加一个
SQLConf:spark.sql.ansi.enabled,用于开启ANSI模式; - 支持聚合表达式的
ANSI SQL过滤子句; - 支持
ANSI SQL OVERLAY功能; - 支持
ANSI嵌套方括号内的注释; - 超出整数范围时抛出异常;
- 区间算术运算的溢出检查;
- 当无效字符串被转换为数字类型时,抛出异常;
- 使用区间乘法和除法的溢出行为与其他操作一致;
- 为
char和decimal添加ANSI类型的别名; SQL解析器定义了ANSI兼容的保留关键字;- 当
ANSI模式开启时,禁止使用保留关键字作为标识符; - 支持
ANSI SQL.LIKE...ESCAPE语法; - 支持
ANSI SQL布尔-谓词语法;
PySpark增强版
- 重新设计的
pandas UDFs,并提供类型提示; - 允许
Pandas UDF采用pd.DataFrames的迭代器; - 支持
StructType作为Scalar Pandas UDF的参数和返回类型; - 通过
Pandas UDFs支持Dataframe Cogroup; - 增加
mapInPandas,允许DataFrames的迭代器; - 部分
SQL函数也应该取数据列名; - 让
PySpark的SQL异常更加Pythonic化;
扩展性增强
- 目录插件;
- 数据源
V2 API重构; Hive 3.0和3.1的版本的元存储支持;- 将
Spark插件接口扩展到驱动程序; - 可通过自定义指标来扩展
Spark指标系统; - 为用于扩展列式处理支持提供了开发者
API; - 使用
DSV2的内置源迁移:parquet, ORC, CSV, JSON, Kafka, Text, Avro; - 允许在
SparkExtensions中注入函数;
连接器增强
- 在数据源表中支持
spark.sql.statistics.fallBackToHdfs; - 升级
Apache ORC到1.5.9; - 支持
CSV数据源的过滤器; - 使用本地数据源优化插入分区
Hive表; - 升级
Kafka到2.4.1; - 新的内置二进制文件数据源,新的无操作批处理数据源和无操作流接收器;
K8s中的原生Spark应用
- 使用
K8S进行更灵敏的动态分配,并在K8S上增加对Spark的Kerberos支持; - 使用
Hadoop兼容的文件系统支持客户端依赖性; - 在
k8s后台增加可配置的认证秘密源; - 支持
K8s的子路径挂载; - 在
PySpark Bindings for K8S中把Python 3作为默认选项;
MLib
- 为
Binarizer、StringIndexer、StopWordsRemover和PySpark QuantileDiscretizer添加了多列支持; - 支持基于树的特征转换;
- 增加了两个新的评估器
MultilabelClassificationEvaluator和RankingEvaluator; - 增加了
PowerIterationClustering的R API; - 添加了用于跟踪ML管道状态的
Spark ML监听器; - 在
Python中的梯度提升树中添加了带有验证集的拟合。 - 增加了
RobustScaler变压器; - 添加了因子化机器分类器和回归器;
- 增加了高斯奈夫贝叶斯和互补奈夫贝叶斯;
此外,在Spark 3.0中,Pyspark中的多类逻辑回归现在将返回LogisticRegressionSummary,而不是其子类BinaryLogisticRegressionSummary;pyspark.ml.param.shared.Has* mixins也不再提供任何set(self, value)setter方法,而是使用各自的self.set(self., value)代替。
SparkR
通过矢量化的R gapply()、dapply()、createDataFrame、collect()提高性能来优化SparkR的互操作性;
还有 "eager execution "的R shell,IDE以及迭代聚类的R API。
弃用组件
- 弃用
Python 2的支持; - 弃用
R 3.4以下版本的支持; - 弃用
Deprecate UserDefinedAggregateFunction;
此次的Spark 3.0也算是一个大版本,不仅带来了不少新功能、也修复了很多已知的问题,在性能上有了很大的提升。
自从Python官方宣布停止维护Python2之后,各大组件也是纷纷响应,都停止了Python的支持,各位项目学习Python的小伙伴也是可以考虑直接学习Python 3了。
老夫虽不正经,但老夫一身的才华!关注我,获取更多编程科技知识。