线程安全
- 多线程访问同一资源,发生资源抢夺.为防止这一现象.产生了锁.
锁的种类
- 自旋锁
- 忙等 (挤厕所,有人占着坑就一直在门口等着,催人家出来,等人出来了马上进去)
- 代码量小
- 适合耗时较少 (等的时间短)
- 有优先级反转问题
- 互斥锁
- 睡觉 等待时候睡觉 先唤醒再执行
- 适合耗时长的
- 没有优先级翻转问题,因为等待状态的高优先级任务没有占用时间片,所以低优先级的任务可以继续进行,然后释放锁.
- 读写锁(也属于自旋锁)
- 多读单写 (多条线程读,单条线程写)
- 自己实现读写锁,只要把写锁住就好
- pthread_rwlock_t lock; 在日常开发中用的比较少
- 可以使用并发队列+dispatch_barrier_async实现类似读写锁的效果.
原子性和非原子性
- 原子性和非原子性的区别就是原子性对该属性加了锁,非原子性没有加锁.
- 原子性不能保证数据绝对安全, 因为只是对get/set方法进行了锁操作. 假如是[array addObject:a]; 这种不是get/set方法对数据操作的话是不能保证线程安全的.
锁
- OSSpinLock
- dispatch_semaphore gcd信号量
- pthread_mutex
- NSLock
- NSCondition
- pthread_mutex(recursive)
- NSRecursiveLock
- NSConditionLock
- @synchronized
我们只介绍4种dispatch_semaphore, NSLock, NSRecursiveLock, @synchronized
dispatch_semaphore
- dispatch_semaphore_create
dispatch_semaphore_t
dispatch_semaphore_create(long value)
{
dispatch_semaphore_t dsema;
// If the internal value is negative, then the absolute of the value is
// equal to the number of waiting threads. Therefore it is bogus to
// initialize the semaphore with a negative value.
if (value < 0) {
return DISPATCH_BAD_INPUT;
}
dsema = _dispatch_object_alloc(DISPATCH_VTABLE(semaphore),
sizeof(struct dispatch_semaphore_s));
dsema->do_next = DISPATCH_OBJECT_LISTLESS;
dsema->do_targetq = _dispatch_get_default_queue(false);
dsema->dsema_value = value;
_dispatch_sema4_init(&dsema->dsema_sema, _DSEMA4_POLICY_FIFO);
dsema->dsema_orig = value;
return dsema;
}
- 创建一个信号量,从源代码中可以看到 value不能小于0,
- 如果确实不小于0就alloc,init 并且赋值给dsema_value(当前value)和dsema_orig(原始value)
DISPATCH_UNAVAILABLE
DISPATCH_EXPORT DISPATCH_NONNULL1 DISPATCH_NOTHROW
long
dispatch_wait(void *object, dispatch_time_t timeout);
#if __has_extension(c_generic_selections)
#define dispatch_wait(object, timeout) \
_Generic((object), \
dispatch_block_t:dispatch_block_wait, \
dispatch_group_t:dispatch_group_wait, \
dispatch_semaphore_t:dispatch_semaphore_wait \
)((object),(timeout))
#endif
long
dispatch_semaphore_wait(dispatch_semaphore_t dsema, dispatch_time_t timeout)
{
long value = os_atomic_dec2o(dsema, dsema_value, acquire);
if (likely(value >= 0)) {
return 0;
}
return _dispatch_semaphore_wait_slow(dsema, timeout);
}
- os_atomic_dec2o操作之后(-1操作之后) 只要 > 0 就通过,正常执行
- <= 0就 _dispatch_semaphore_wait_slow 等待
DISPATCH_NOINLINE
static long
_dispatch_semaphore_wait_slow(dispatch_semaphore_t dsema,
dispatch_time_t timeout)
{
long orig;
_dispatch_sema4_create(&dsema->dsema_sema, _DSEMA4_POLICY_FIFO);
switch (timeout) {
default:
if (!_dispatch_sema4_timedwait(&dsema->dsema_sema, timeout)) {
break;
}
// Fall through and try to undo what the fast path did to
// dsema->dsema_value
case DISPATCH_TIME_NOW:
orig = dsema->dsema_value;
while (orig < 0) {
if (os_atomic_cmpxchgvw2o(dsema, dsema_value, orig, orig + 1,
&orig, relaxed)) {
return _DSEMA4_TIMEOUT();
}
}
// Another thread called semaphore_signal().
// Fall through and drain the wakeup.
case DISPATCH_TIME_FOREVER:
_dispatch_sema4_wait(&dsema->dsema_sema);
break;
}
return 0;
}
long
dispatch_semaphore_signal(dispatch_semaphore_t dsema)
{
long value = os_atomic_inc2o(dsema, dsema_value, release);
if (likely(value > 0)) {
return 0;
}
if (unlikely(value == LONG_MIN)) {
DISPATCH_CLIENT_CRASH(value,
"Unbalanced call to dispatch_semaphore_signal()");
}
return _dispatch_semaphore_signal_slow(dsema);
}
- os_atomic_inc2o操作之后(+1操作之后)
-
0了就唤醒,然后正常执行操作.
NSLock
- NSLock是对pthread_mutex的封装
- 源码里没看见,但是我猜这里attr应该是PTHREAD_MUTEX_NORMAL
// Swift源码
open class NSLock: NSObject, NSLocking {
internal var mutex = _MutexPointer.allocate(capacity: 1)
#if os(macOS) || os(iOS) || os(Windows)
private var timeoutCond = _ConditionVariablePointer.allocate(capacity: 1)
private var timeoutMutex = _MutexPointer.allocate(capacity: 1)
#endif
public override init() {
#if os(Windows)
InitializeSRWLock(mutex)
InitializeConditionVariable(timeoutCond)
InitializeSRWLock(timeoutMutex)
#else
// 初始化pthread_mutex
pthread_mutex_init(mutex, nil)
#if os(macOS) || os(iOS)
pthread_cond_init(timeoutCond, nil)
pthread_mutex_init(timeoutMutex, nil)
#endif
#endif
}
... 省略
open func lock() {
#if os(Windows)
AcquireSRWLockExclusive(mutex)
#else
pthread_mutex_lock(mutex)
#endif
}
open func unlock() {
#if os(Windows)
ReleaseSRWLockExclusive(mutex)
AcquireSRWLockExclusive(timeoutMutex)
WakeAllConditionVariable(timeoutCond)
ReleaseSRWLockExclusive(timeoutMutex)
#else
pthread_mutex_unlock(mutex)
#if os(macOS) || os(iOS)
// Wakeup any threads waiting in lock(before:)
pthread_mutex_lock(timeoutMutex)
pthread_cond_broadcast(timeoutCond)
pthread_mutex_unlock(timeoutMutex)
#endif
#endif
}
NSRecursiveLock
- NSRecursiveLock 也是对pthread_mutex的封装
- 和NSLock相比 他的attr是PTHREAD_MUTEX_RECURSIVE
pthread_mutexattr_settype(attrs, Int32(PTHREAD_MUTEX_RECURSIVE))
- 最近看很多网上的资料说这段代码导致死锁
- (void)testtest {
NSRecursiveLock *lock = [[NSRecursiveLock alloc] init];
for (int i = 0; i < 10; i++) {
dispatch_async(dispatch_get_global_queue(0, 0), ^{
static void (^block)(int);
block = ^(int value) {
[lock lock];
if (value > 0) {
NSLog(@"value——%d", value);
block(value - 1);
}
[lock unlock];
};
block(10);
});
}
}
但是个人感觉就是普通的野指针问题. 把lock对象变成属性 或者静态全局, 都能正常跑,而且输出正常.所以感觉这里不存在死锁. 官方文档也说
NSRecursiveLock defines a lock that may be acquired multiple times by the same thread without causing a deadlock, a situation where a thread is permanently blocked waiting for itself to relinquish a lock. While the locking thread has one or more locks, all other threads are prevented from accessing the code protected by the lock.@synchronized互斥锁 用的最多,性能最差的.
- @synchronized(obj)本质
@try {
objc_sync_enter(obj);
// do work
} @finally {
objc_sync_exit(obj);
}
int objc_sync_enter(id obj)
{
int result = OBJC_SYNC_SUCCESS;
if (obj) {
SyncData* data = id2data(obj, ACQUIRE);
ASSERT(data);
data->mutex.lock();
} else {
// @synchronized(nil) does nothing
if (DebugNilSync) {
_objc_inform("NIL SYNC DEBUG: @synchronized(nil); set a breakpoint on objc_sync_nil to debug");
}
objc_sync_nil();
}
return result;
}
// End synchronizing on 'obj'.
// Returns OBJC_SYNC_SUCCESS or OBJC_SYNC_NOT_OWNING_THREAD_ERROR
int objc_sync_exit(id obj)
{
int result = OBJC_SYNC_SUCCESS;
if (obj) {
SyncData* data = id2data(obj, RELEASE);
if (!data) {
result = OBJC_SYNC_NOT_OWNING_THREAD_ERROR;
} else {
bool okay = data->mutex.tryUnlock();
if (!okay) {
result = OBJC_SYNC_NOT_OWNING_THREAD_ERROR;
}
}
} else {
// @synchronized(nil) does nothing
}
return result;
}
typedef struct alignas(CacheLineSize) SyncData {
struct SyncData* nextData;
DisguisedPtr<objc_object> object; // @synchronized(obj)中的obj
int32_t threadCount; // number of THREADS using this block
recursive_mutex_t mutex; // 真正的锁
} SyncData;
struct SyncList {
SyncData *data;
spinlock_t lock; // 防止多个线程对此链表修改的锁.
constexpr SyncList() : data(nil), lock(fork_unsafe_lock) { }
};
// Use multiple parallel lists to decrease contention among unrelated objects.
#define LOCK_FOR_OBJ(obj) sDataLists[obj].lock
#define LIST_FOR_OBJ(obj) sDataLists[obj].data
static StripedMap<SyncList> sDataLists;
核心代码主要是id2data
static SyncData* id2data(id object, enum usage why)
{
spinlock_t *lockp = &LOCK_FOR_OBJ(object);
SyncData **listp = &LIST_FOR_OBJ(object);
SyncData* result = NULL;
#if SUPPORT_DIRECT_THREAD_KEYS
// Check per-thread single-entry fast cache for matching object
bool fastCacheOccupied = NO;
SyncData *data = (SyncData *)tls_get_direct(SYNC_DATA_DIRECT_KEY);
if (data) {
fastCacheOccupied = YES;
if (data->object == object) {
// Found a match in fast cache.
uintptr_t lockCount;
result = data;
lockCount = (uintptr_t)tls_get_direct(SYNC_COUNT_DIRECT_KEY);
if (result->threadCount <= 0 || lockCount <= 0) {
_objc_fatal("id2data fastcache is buggy");
}
switch(why) {
case ACQUIRE: {
lockCount++;
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)lockCount);
break;
}
case RELEASE:
lockCount--;
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)lockCount);
if (lockCount == 0) {
// remove from fast cache
tls_set_direct(SYNC_DATA_DIRECT_KEY, NULL);
// atomic because may collide with concurrent ACQUIRE
OSAtomicDecrement32Barrier(&result->threadCount);
}
break;
case CHECK:
// do nothing
break;
}
return result;
}
}
#endif
// Check per-thread cache of already-owned locks for matching object
SyncCache *cache = fetch_cache(NO);
if (cache) {
unsigned int i;
for (i = 0; i < cache->used; i++) {
SyncCacheItem *item = &cache->list[i];
if (item->data->object != object) continue;
// Found a match.
result = item->data;
if (result->threadCount <= 0 || item->lockCount <= 0) {
_objc_fatal("id2data cache is buggy");
}
switch(why) {
case ACQUIRE:
item->lockCount++;
break;
case RELEASE:
item->lockCount--;
if (item->lockCount == 0) {
// remove from per-thread cache
cache->list[i] = cache->list[--cache->used];
// atomic because may collide with concurrent ACQUIRE
OSAtomicDecrement32Barrier(&result->threadCount);
}
break;
case CHECK:
// do nothing
break;
}
return result;
}
}
// Thread cache didn't find anything.
// Walk in-use list looking for matching object
// Spinlock prevents multiple threads from creating multiple
// locks for the same new object.
// We could keep the nodes in some hash table if we find that there are
// more than 20 or so distinct locks active, but we don't do that now.
lockp->lock();
{
SyncData* p;
SyncData* firstUnused = NULL;
for (p = *listp; p != NULL; p = p->nextData) {
if ( p->object == object ) {
result = p;
// atomic because may collide with concurrent RELEASE
OSAtomicIncrement32Barrier(&result->threadCount);
goto done;
}
if ( (firstUnused == NULL) && (p->threadCount == 0) )
firstUnused = p;
}
// no SyncData currently associated with object
if ( (why == RELEASE) || (why == CHECK) )
goto done;
// an unused one was found, use it
if ( firstUnused != NULL ) {
result = firstUnused;
result->object = (objc_object *)object;
result->threadCount = 1;
goto done;
}
}
// Allocate a new SyncData and add to list.
// XXX allocating memory with a global lock held is bad practice,
// might be worth releasing the lock, allocating, and searching again.
// But since we never free these guys we won't be stuck in allocation very often.
posix_memalign((void **)&result, alignof(SyncData), sizeof(SyncData));
result->object = (objc_object *)object;
result->threadCount = 1;
new (&result->mutex) recursive_mutex_t(fork_unsafe_lock);
result->nextData = *listp;
*listp = result;
done:
lockp->unlock();
if (result) {
// Only new ACQUIRE should get here.
// All RELEASE and CHECK and recursive ACQUIRE are
// handled by the per-thread caches above.
if (why == RELEASE) {
// Probably some thread is incorrectly exiting
// while the object is held by another thread.
return nil;
}
if (why != ACQUIRE) _objc_fatal("id2data is buggy");
if (result->object != object) _objc_fatal("id2data is buggy");
#if SUPPORT_DIRECT_THREAD_KEYS
if (!fastCacheOccupied) {
// Save in fast thread cache
tls_set_direct(SYNC_DATA_DIRECT_KEY, result);
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)1);
} else
#endif
{
// Save in thread cache
if (!cache) cache = fetch_cache(YES);
cache->list[cache->used].data = result;
cache->list[cache->used].lockCount = 1;
cache->used++;
}
}
return result;
}
解析:
tls -- thread local storage.
加锁和解锁部分都是id2data只是参数不一样.所以只分析加锁. 这里主要分为3部分.
第一部分先从tls中获取SyncData
- 通过tls获取SyncData 拿到了,说明支持快速缓存. fastCacheOccupied = YES;
- 拿到SyncData之后 比较SyncData里的object,说明以前用这个传进来的obj锁过.相当于递归锁了. lockCount++;
第二部分从缓存历史记录查找有没有这个锁. 找到之后也是lockCount++
第三部分是全局查找,所以前两步都没找到的情况下才会到这里.没找到就新建. Allocate a new SyncData and add to list.
done部分我理解主要是附带的处理, 判断fastCacheOccupied,yes表示我们这个thread的tls里找过obj,但是没找到. 那就把这回的obj放到tls里,好让下次走第一部分. 否则就放缓存历史记录里,好让下次走第二部分. 至于lockp我理解他对应的是SyncList里的lock,也就是防止多个线程对SyncList修改的锁.
自旋锁
- atomic 修饰符
static inline void reallySetProperty(id self, SEL _cmd, id newValue, ptrdiff_t offset, bool atomic, bool copy, bool mutableCopy) __attribute__((always_inline));
static inline void reallySetProperty(id self, SEL _cmd, id newValue, ptrdiff_t offset, bool atomic, bool copy, bool mutableCopy)
{
if (offset == 0) {
object_setClass(self, newValue);
return;
}
id oldValue;
id *slot = (id*) ((char*)self + offset);
if (copy) {
newValue = [newValue copyWithZone:nil];
} else if (mutableCopy) {
newValue = [newValue mutableCopyWithZone:nil];
} else {
if (*slot == newValue) return;
newValue = objc_retain(newValue);
}
if (!atomic) {
oldValue = *slot;
*slot = newValue;
} else {
spinlock_t& slotlock = PropertyLocks[slot];
slotlock.lock();
oldValue = *slot;
*slot = newValue;
slotlock.unlock();
}
objc_release(oldValue);
}
id objc_getProperty(id self, SEL _cmd, ptrdiff_t offset, BOOL atomic) {
if (offset == 0) {
return object_getClass(self);
}
// Retain release world
id *slot = (id*) ((char*)self + offset);
if (!atomic) return *slot;
// Atomic retain release world
spinlock_t& slotlock = PropertyLocks[slot];
slotlock.lock();
id value = objc_retain(*slot);
slotlock.unlock();
// for performance, we (safely) issue the autorelease OUTSIDE of the spinlock.
return objc_autoreleaseReturnValue(value);
}
从源码中我们可以看到 atomic时候 加了spinlock_t锁 然后操作. nonatomic时候直接操作, 并且锁只是对get/set方法做了加锁,并不能保证数据绝对安全.
性能:
图片是ibireme的不再安全的OSSpinLock里的性能对比图
总结
- 锁是为了防止多个线程之间的资源抢夺.
- 自旋锁有优先级反转的问题, 不要用.
- 对比锁的性能选择合适的.个人推荐semaphore,NSLock,NSRecursiveLock, @synchronized 这4个.
- atomic不能保证线程的绝对安全.