java基础

527 阅读35分钟

路线

总结一下我认为学习Java的路线:

Java基础-->流程控制-->面向对象(包括Java语法)-->Java集合-->Java IO流-->异常-->多线程-->网络编程-->反射
JavaWeb基础-->HTML/CSS/JavaScript/jQuery-->Tomcat-->XML/注解->Servlet-->HTTP-->Filter过滤器和监听器-->JSP-->AJAX/JSON-->数据库(MySQL)-->JDBC和DbUtils
项目管理和框架-->Maven-->SpringBoot
Linux基本命令

最后我们的项目是这样的:

以Maven来管理我们的项目
前端通过BootStrap来搭建页面框架
SpringBoot来搭建Java后端环境,SpringMVC处理前端请求(SpringBoot整合了)
DAO层使用DbUtils组件来完成,MySQL作为数据库

第一个java程序

打印ello World

public class HelloWorld {
    public static void main(String []args) {
        System.out.println("Hello World"); // 打印 Hello World
    }
}

基本数据类型

Java语言提供了八种基本类型。六种数字类型(四个整数型,两个浮点型),一种字符类型,还有一种布尔型。

6种数字类型 :byte、short、int、long、float、double 1种字符类型:char 1中布尔型:boolean。
这八种基本类型都有对应的包装类分别为:Byte、Short、Integer、Long、Float、Double、Character、Boolean

byte:

byte 数据类型是8位、有符号的,以二进制补码表示的整数;
最小值是 -128(-2^7);
最大值是 127(2^7-1);
默认值是 0;
byte 类型用在大型数组中节约空间,主要代替整数,因为 byte 变量占用的空间只有 int 类型的四分之一;
例子:byte a = 100,byte b = -50。

short:

short 数据类型是 16 位、有符号的以二进制补码表示的整数
最小值是 -32768(-2^15);
最大值是 32767(2^15 - 1);
Short 数据类型也可以像 byte 那样节省空间。一个short变量是int型变量所占空间的二分之一;
默认值是 0;
例子:short s = 1000,short r = -20000。

int:

int 数据类型是32位、有符号的以二进制补码表示的整数;
最小值是 -2,147,483,648(-2^31);
最大值是 2,147,483,647(2^31 - 1);
一般地整型变量默认为 int 类型;
默认值是 0 ;
例子:int a = 100000, int b = -200000。

long:

long 数据类型是 64 位、有符号的以二进制补码表示的整数;
最小值是 -9,223,372,036,854,775,808(-2^63);
最大值是 9,223,372,036,854,775,807(2^63 -1);
这种类型主要使用在需要比较大整数的系统上;
默认值是 0L;
例子: long a = 100000L,Long b = -200000L。
"L"理论上不分大小写,但是若写成"l"容易与数字"1"混淆,不容易分辩。所以最好大写。

float:

float 数据类型是单精度、32位、符合IEEE 754标准的浮点数;
float 在储存大型浮点数组的时候可节省内存空间;
默认值是 0.0f;
浮点数不能用来表示精确的值,如货币;
例子:float f1 = 234.5f。

double:

double 数据类型是双精度、64 位、符合IEEE 754标准的浮点数;
浮点数的默认类型为double类型;
double类型同样不能表示精确的值,如货币;
默认值是 0.0d;
例子:double d1 = 123.4。

boolean:

boolean数据类型表示一位的信息;
只有两个取值:true 和 false;
这种类型只作为一种标志来记录 true/false 情况;
默认值是 false;
例子:boolean one = true。

char:

char类型是一个单一的 16 位 Unicode 字符;
最小值是 \u0000(即为0);
最大值是 \uffff(即为65,535);
char 数据类型可以储存任何字符;
例子:char letter = 'A';。

自动装箱与拆箱

装箱:将基本类型用它们对应的引用类型包装起来;
拆箱:将包装类型转换为基本数据类型;

自动类型转换

必须满足转换前的数据类型的位数要低于转换后的数据类型,例如: short数据类型的位数为16位,就可以自动转换位数为32的int类型,同样float数据类型的位数为32,可以自动转换为64位的double类型。

public class ZiDongLeiZhuan{
        public static void main(String[] args){
            char c1='a';//定义一个char类型
            int i1 = c1;//char自动类型转换为int
            System.out.println("char自动类型转换为int后的值等于"+i1);
            char c2 = 'A';//定义一个char类型
            int i2 = c2+1;//char 类型和 int 类型计算
            System.out.println("char类型和int计算后的值等于"+i2);
        }
}
//char自动类型转换为int后的值等于97
//char类型和int计算后的值等于66

强制类型转换

  1. 条件是转换的数据类型必须是兼容的。
  2. 格式:(type)value type是要强制类型转换后的数据类型 实例:
public class QiangZhiZhuanHuan{
    public static void main(String[] args){
        int i1 = 123;
        byte b = (byte)i1;//强制类型转换为byte
        System.out.println("int强制类型转换为byte后的值等于"+b);
    }
}
//int强制类型转换为byte后的值等于123

变量类型

在Java语言中,所有的变量在使用前必须声明数据类型:

int a, b, c;         // 声明三个int型整数:a、 b、c
int d = 3, e = 4, f = 5; // 声明三个整数并赋予初值
byte z = 22;         // 声明并初始化 z
String s = "runoob";  // 声明并初始化字符串 s
double pi = 3.14159; // 声明了双精度浮点型变量 pi
char x = 'x';        // 声明变量 x 的值是字符 'x'。

Java语言支持的变量类型有:
类变量:独立于方法之外的变量,用 static 修饰。
实例变量:独立于方法之外的变量,不过没有 static 修饰。
局部变量:类的方法中的变量。

public class Variable{
    static int allClicks=0;    // 类变量
    String str="hello world";  // 实例变量
    public void method(){
        int i =0;  // 局部变量
    }
}

Java 局部变量

局部变量声明在方法、构造方法或者语句块中;
局部变量在方法、构造方法、或者语句块被执行的时候创建,当它们执行完成后,变量将会被销毁;
访问修饰符不能用于局部变量;
局部变量只在声明它的方法、构造方法或者语句块中可见;
局部变量是在栈上分配的。
局部变量没有默认值,所以局部变量被声明后,必须经过初始化,才可以使用。 实例 1 在以下实例中age是一个局部变量。定义在pupAge()方法中,它的作用域就限制在这个方法中。

package com.runoob.test;
 
public class Test{ 
   public void pupAge(){
      int age = 0;
      age = age + 7;
      System.out.println("小狗的年龄是: " + age);
   }
   
   public static void main(String[] args){
      Test test = new Test();
      test.pupAge();
   }
}
//小狗的年龄是: 7

实例变量

实例变量声明在一个类中,但在方法、构造方法和语句块之外;
当一个对象被实例化之后,每个实例变量的值就跟着确定;
实例变量在对象创建的时候创建,在对象被销毁的时候销毁;
实例变量的值应该至少被一个方法、构造方法或者语句块引用,使得外部能够通过这些方式获取实例变量信息;
实例变量可以声明在使用前或者使用后;
访问修饰符可以修饰实例变量;
实例变量对于类中的方法、构造方法或者语句块是可见的。一般情况下应该把实例变量设为私有。通过使用访问修饰符可以使实例变量对子类可见;
实例变量具有默认值。数值型变量的默认值是0,布尔型变量的默认值是false,引用类型变量的默认值是null。变量的值可以在声明时指定,也可以在构造方法中指定;
实例变量可以直接通过变量名访问。但在静态方法以及其他类中,就应该使用完全限定名:ObejectReference.VariableName。

import java.io.*;
public class Employee{
   // 这个实例变量对子类可见
   public String name;
   // 私有变量,仅在该类可见
   private double salary;
   //在构造器中对name赋值
   public Employee (String empName){
      name = empName;
   }
   //设定salary的值
   public void setSalary(double empSal){
      salary = empSal;
   }  
   // 打印信息
   public void printEmp(){
      System.out.println("名字 : " + name );
      System.out.println("薪水 : " + salary);
   }
 
   public static void main(String[] args){
      Employee empOne = new Employee("RUNOOB");
      empOne.setSalary(1000.0);
      empOne.printEmp();
   }
}
//$ javac Employee.java 
//$ java Employee
//名字 : RUNOOB
//薪水 : 1000.0

类变量(静态变量)

类变量也称为静态变量,在类中以 static 关键字声明,但必须在方法之外。
无论一个类创建了多少个对象,类只拥有类变量的一份拷贝 。 静态变量除了被声明为常量外很少使用。常量是指声明为public/private,final和static类型的变量。常量初始化后不可改变。
静态变量储存在静态存储区。经常被声明为常量,很少单独使用static声明变量。
静态变量在第一次被访问时创建,在程序结束时销毁。
与实例变量具有相似的可见性。但为了对类的使用者可见,大多数静态变量声明为public类型。
默认值和实例变量相似。数值型变量默认值是0,布尔型默认值是false,引用类型默认值是null。变量的值可以在声明的时候指定,也可以在构造方法中指定。此外,静态变量还可以在静态语句块中初始化。
静态变量可以通过:ClassName.VariableName的方式访问。
类变量被声明为public static final类型时,类变量名称一般建议使用大写字母。如果静态变量不是public和final类型,其命名方式与实例变量以及局部变量的命名方式一致。

import java.io.*;
 
public class Employee {
    //salary是静态的私有变量
    private static double salary;
    // DEPARTMENT是一个常量
    public static final String DEPARTMENT = "开发人员";
    public static void main(String[] args){
    salary = 10000;
        System.out.println(DEPARTMENT+"平均工资:"+salary);
    }
}

Java 修饰符

Java语言提供了很多修饰符,主要分为以下两类:
访问修饰符
非访问修饰符
修饰符用来定义类、方法或者变量,通常放在语句的最前端。

访问控制修饰符

Java中,可以使用访问控制符来保护对类、变量、方法和构造方法的访问。Java 支持 4 种不同的访问权限。
default (即默认,什么也不写): 在同一包内可见,不使用任何修饰符。使用对象:类、接口、变量、方法。
private : 在同一类内可见。使用对象:变量、方法。 注意:不能修饰类(外部类)
public : 对所有类可见。使用对象:类、接口、变量、方法
protected : 对同一包内的类和所有子类可见。使用对象:变量、方法。 注意:不能修饰类(外部类)。

default

默认访问修饰符-不使用任何关键字
使用默认访问修饰符声明的变量和方法,对同一个包内的类是可见的。接口里的变量都隐式声明为 public static final,而接口里的方法默认情况下访问权限为 public。

公有访问修饰符-public

被声明为 public 的类、方法、构造方法和接口能够被任何其他类访问。 如果几个相互访问的 public 类分布在不同的包中,则需要导入相应 public 类所在的包。由于类的继承性,类所有的公有方法和变量都能被其子类继承。 以下函数使用了公有访问控制:

public static void main(String[] arguments) {
   // ...
}

Java 程序的 main() 方法必须设置成公有的,否则,Java 解释器将不能运行该类。

受保护的访问修饰符-protected

protected 需要从以下两个点来分析说明:
子类与基类在同一包中:被声明为 protected 的变量、方法和构造器能被同一个包中的任何其他类访问;
子类与基类不在同一包中:那么在子类中,子类实例可以访问其从基类继承而来的 protected 方法,而不能访问基类实例的protected方法。
protected 可以修饰数据成员,构造方法,方法成员,不能修饰类(内部类除外)。

子类能访问 protected 修饰符声明的方法和变量,这样就能保护不相关的类使用这些方法和变量。
下面的父类使用了 protected 访问修饰符,子类重写了父类的 openSpeaker() 方法。

class AudioPlayer {
  protected boolean openSpeaker(Speaker sp) {
     // 实现细节
  }
}

class StreamingAudioPlayer extends AudioPlayer {
  protected boolean openSpeaker(Speaker sp) {
     // 实现细节
  }
}

如果把 openSpeaker() 方法声明为 private,那么除了 AudioPlayer 之外的类将不能访问该方法。
如果把 openSpeaker() 声明为 public,那么所有的类都能够访问该方法。
如果我们只想让该方法对其所在类的子类可见,则将该方法声明为 protected。

总结-访问控制和继承

请注意以下方法继承的规则: 父类中声明为 public 的方法在子类中也必须为 public。 父类中声明为 protected 的方法在子类中要么声明为 protected,要么声明为 public,不能声明为 private。 父类中声明为 private 的方法,不能够被继承。

非访问修饰符

为了实现一些其他的功能,Java 也提供了许多非访问修饰符。
static 修饰符,用来修饰类方法和类变量。
final 修饰符,用来修饰类、方法和变量,final 修饰的类不能够被继承,修饰的方法不能被继承类重新定义,修饰的变量为常量,是不可修改的。
abstract 修饰符,用来创建抽象类和抽象方法。
synchronized 和 volatile 修饰符,主要用于线程的编程。

static 修饰符

静态变量:
static 关键字用来声明独立于对象的静态变量,无论一个类实例化多少对象,它的静态变量只有一份拷贝。 静态变量也被称为类变量。局部变量不能被声明为 static 变量。
静态方法:
static 关键字用来声明独立于对象的静态方法。静态方法不能使用类的非静态变量。静态方法从参数列表得到数据,然后计算这些数据。
对类变量和方法的访问可以直接使用 classname.variablename 和 classname.methodname 的方式访问。

如下例所示,static修饰符用来创建类方法和类变量。

public class InstanceCounter {
   private static int numInstances = 0;
   protected static int getCount() {
      return numInstances;
   }
 
   private static void addInstance() {
      numInstances++;
   }
 
   InstanceCounter() {
      InstanceCounter.addInstance();
   }
 
   public static void main(String[] arguments) {
      System.out.println("Starting with " +
      InstanceCounter.getCount() + " instances");
      for (int i = 0; i < 500; ++i){
         new InstanceCounter();
          }
      System.out.println("Created " +
      InstanceCounter.getCount() + " instances");
   }
}
//Starting with 0 instances
//Created 500 instances

final 修饰符

final 变量:
final 表示"最后的、最终的"含义,变量一旦赋值后,不能被重新赋值。被 final 修饰的实例变量必须显式指定初始值。
final 修饰符通常和 static 修饰符一起使用来创建类常量。

public class Test{
  final int value = 10;
  // 下面是声明常量的实例
  public static final int BOXWIDTH = 6;
  static final String TITLE = "Manager";
 
  public void changeValue(){
     value = 12; //将输出一个错误
  }
}

父类中的 final 方法可以被子类继承,但是不能被子类重写。 声明 final 方法的主要目的是防止该方法的内容被修改。

abstract 修饰符

抽象类:
抽象类不能用来实例化对象,声明抽象类的唯一目的是为了将来对该类进行扩充。 一个类不能同时被 abstract 和 final 修饰。如果一个类包含抽象方法,那么该类一定要声明为抽象类,否则将出现编译错误。 抽象类可以包含抽象方法和非抽象方法。

abstract class Caravan{
   private double price;
   private String model;
   private String year;
   public abstract void goFast(); //抽象方法
   public abstract void changeColor();
}

抽象方法
抽象方法是一种没有任何实现的方法,该方法的的具体实现由子类提供。
抽象方法不能被声明成 final 和 static。
任何继承抽象类的子类必须实现父类的所有抽象方法,除非该子类也是抽象类。
如果一个类包含若干个抽象方法,那么该类必须声明为抽象类。抽象类可以不包含抽象方法。
抽象方法的声明以分号结尾,例如:public abstract sample();

public abstract class SuperClass{
    abstract void m(); //抽象方法
}
 
class SubClass extends SuperClass{
     //实现抽象方法
      void m(){
          .........
      }
}

synchronized 修饰符

synchronized 关键字声明的方法同一时间只能被一个线程访问。synchronized 修饰符可以应用于四个访问修饰符。

循环结构

for循环

public class Test {
   public static void main(String args[]) {
 
      for(int x = 10; x < 20; x = x+1) {
         System.out.print("value of x : " + x );
         System.out.print("\n");
      }
   }
}

增强 for 循环

public class Test {
   public static void main(String args[]){
      int [] numbers = {10, 20, 30, 40, 50};
 
      for(int x : numbers ){
         System.out.print( x );
         System.out.print(",");
      }
      System.out.print("\n");
      String [] names ={"James", "Larry", "Tom", "Lacy"};
      for( String name : names ) {
         System.out.print( name );
         System.out.print(",");
      }
   }
}

Number & Math 类

般地,当需要使用数字的时候,我们通常使用内置数据类型,如:byte、int、long、double 等。 在实际开发过程中,我们经常会遇到需要使用对象,而不是内置数据类型的情形。为了解决这个问题,Java 语言为每一个内置数据类型提供了对应的包装类。
所有的包装类(Integer、Long、Byte、Double、Float、Short)都是抽象类 Number 的子类。

这种由编译器特别支持的包装称为装箱,所以当内置数据类型被当作对象使用的时候,编译器会把内置类型装箱为包装类。相似的,编译器也可以把一个对象拆箱为内置类型。Number 类属于 java.lang 包。
下面是一个使用 Integer 对象的实例:

public class Test{

  public static void main(String args[]){
     Integer x = 5;
     x =  x + 10;
     System.out.println(x); 
  }
}

当 x 被赋为整型值时,由于x是一个对象,所以编译器要对x进行装箱。然后,为了使x能进行加运算,所以要对x进行拆箱。

Math 类

Java 的 Math 包含了用于执行基本数学运算的属性和方法,如初等指数、对数、平方根和三角函数。
Math 的方法都被定义为 static 形式,通过 Math 类可以在主函数中直接调用。

public class Test {  
    public static void main (String []args)  
    {  
        System.out.println("90 度的正弦值:" + Math.sin(Math.PI/2));  
        System.out.println("0度的余弦值:" + Math.cos(0));  
        System.out.println("60度的正切值:" + Math.tan(Math.PI/3));  
        System.out.println("1的反正切值: " + Math.atan(1));  
        System.out.println("π/2的角度值:" + Math.toDegrees(Math.PI/2));  
        System.out.println(Math.PI);  
    }  
}

Character 类

Character 类用于对单个字符进行操作。
Character 类在对象中包装一个基本类型 char 的值

char ch = 'a';
 
// Unicode 字符表示形式
char uniChar = '\u039A'; 
 
// 字符数组
char[] charArray ={ 'a', 'b', 'c', 'd', 'e' };

然而,在实际开发过程中,我们经常会遇到需要使用对象,而不是内置数据类型的情况。为了解决这个问题,Java语言为内置数据类型char提供了包装类Character类。
Character类提供了一系列方法来操纵字符。你可以使用Character的构造方法创建一个Character类对象,例如: Character ch = new Character('a');

String 类

字符串广泛应用 在 Java 编程中,在 Java 中字符串属于对象,Java 提供了 String 类来创建和操作字符串。

创建字符串

创建字符串最简单的方式如下:
String greeting = "菜鸟教程";
注意:String 类是不可改变的,所以你一旦创建了 String 对象,那它的值就无法改变了(详看笔记部分解析)。 如果需要对字符串做很多修改,那么应该选择使用 StringBuffer & StringBuilder 类。

字符串长度

用于获取有关对象的信息的方法称为访问器方法。
String 类的一个访问器方法是 length() 方法,它返回字符串对象包含的字符数。

public class StringDemo {
    public static void main(String args[]) {
        String site = "www.runoob.com";
        int len = site.length();
        System.out.println( "菜鸟教程网址长度 : " + len );
   }
}
//菜鸟教程网址长度 : 14

连接字符串

String 类提供了连接两个字符串的方法:
string1.concat(string2);
返回 string2 连接 string1 的新字符串。也可以对字符串常量使用 concat() 方法,如:
"我的名字是 ".concat("Runoob");
更常用的是使用'+'操作符来连接字符串,如:
"Hello," + " runoob" + "!"

StringBuffer 和 StringBuilder 类

当对字符串进行修改的时候,需要使用 StringBuffer 和 StringBuilder 类。 和 String 类不同的是,StringBuffer 和 StringBuilder 类的对象能够被多次的修改,并且不产生新的未使用对象。

public class Test{
  public static void main(String args[]){
    StringBuffer sBuffer = new StringBuffer("菜鸟教程官网:");
    sBuffer.append("www");
    sBuffer.append(".runoob");
    sBuffer.append(".com");
    System.out.println(sBuffer);  
  }
}

数组

Java 语言中提供的数组是用来存储固定大小的同类型元素。
你可以声明一个数组变量,如 numbers[100] 来代替直接声明 100 个独立变量 number0,number1,....,number99。

声明数组变量

首先必须声明数组变量,才能在程序中使用数组。下面是声明数组变量的语法:

dataType[] arrayRefVar;   // 首选的方法
//或
dataType arrayRefVar[];  // 效果相同,但不是首选方法
//实例:
double[] myList; 

注意: 建议使用 dataType[] arrayRefVar 的声明风格声明数组变量。 dataType arrayRefVar[] 风格是来自 C/C++ 语言 ,在Java中采用是为了让 C/C++ 程序员能够快速理解java语言。

创建数组

Java语言使用new操作符来创建数组,语法如下:
arrayRefVar = new dataType[arraySize];
数组变量的声明,和创建数组可以用一条语句完成,如下所示:
dataType[] arrayRefVar = new dataType[arraySize];

实例
下面的语句首先声明了一个数组变量 myList,接着创建了一个包含 10 个 double 类型元素的数组,并且把它的引用赋值给 myList 变量。


public class TestArray {
  public static void main(String[] args) {
     // 数组大小
     int size = 10;
     // 定义数组
     double[] myList = new double[size];
     myList[0] = 5.6;
     myList[1] = 4.5;
     myList[2] = 3.3;
     // 计算所有元素的总和
     double total = 0;
     for (int i = 0; i < size; i++) {
        total += myList[i];
     }
     System.out.println("总和为: " + total);
  }
}

处理数组

数组的元素类型和数组的大小都是确定的,所以当处理数组元素时候,我们通常使用基本循环或者 For-Each 循环。
示例
该实例完整地展示了如何创建、初始化和操纵数组:

public class TestArray {
  public static void main(String[] args) {
     double[] myList = {1.9, 2.9, 3.4, 3.5};

     // 打印所有数组元素
     for (int i = 0; i < myList.length; i++) {
        System.out.println(myList[i] + " ");
     }
     // 计算所有元素的总和
     double total = 0;
     for (int i = 0; i < myList.length; i++) {
        total += myList[i];
     }
     System.out.println("Total is " + total);
     // 查找最大元素
     double max = myList[0];
     for (int i = 1; i < myList.length; i++) {
        if (myList[i] > max) max = myList[i];
     }
     System.out.println("Max is " + max);
  }
}

For-Each 循环

public class TestArray {
  public static void main(String[] args) {
     double[] myList = {1.9, 2.9, 3.4, 3.5};

     // 打印所有数组元素
     for (double element: myList) {
        System.out.println(element);
     }
  }
}

数组作为函数的参数

数组可以作为参数传递给方法。
例如,下面的例子就是一个打印 int 数组中元素的方法:

public static void printArray(int[] array) {
 for (int i = 0; i < array.length; i++) {
   System.out.print(array[i] + " ");
 }
} 

//printArray(new int[]{3, 1, 2, 6, 4, 2});

数组作为函数的返回值

public static int[] reverse(int[] list) {
  int[] result = new int[list.length];
 
  for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
    result[j] = list[i];
  }
  return result;
}

多维数组

多维数组可以看成是数组的数组,比如二维数组就是一个特殊的一维数组,其每一个元素都是一个一维数组,例如:

String str[][] = new String[3][4];

Arrays 类

java.util.Arrays 类能方便地操作数组,它提供的所有方法都是静态的。
具有以下功能:
给数组赋值:通过 fill 方法。
对数组排序:通过 sort 方法,按升序。
比较数组:通过 equals 方法比较数组中元素值是否相等。
查找数组元素:通过 binarySearch 方法能对排序好的数组进行二分查找法操作。

日期时间

java.util 包提供了 Date 类来封装当前的日期和时间。 Date 类提供两个构造函数来实例化 Date 对象。
第一个构造函数使用当前日期和时间来初始化对象。 Date( )
第二个构造函数接收一个参数,该参数是从1970年1月1日起的毫秒数。
Date(long millisec)

获取当前日期时间

Java中获取当前日期和时间很简单,使用 Date 对象的 toString() 方法来打印当前日期和时间,如下所示:

import java.util.Date;
  
public class DateDemo {
   public static void main(String args[]) {
       // 初始化 Date 对象
       Date date = new Date();
        
       // 使用 toString() 函数显示日期时间
       System.out.println(date.toString());
   }
}

//运行结果:Mon May 04 09:51:52 CDT 2013

日期比较

Java使用以下三种方法来比较两个日期:
使用 getTime() 方法获取两个日期(自1970年1月1日经历的毫秒数值),然后比较这两个值。
使用方法 before(),after() 和 equals()。例如,一个月的12号比18号早,则 new Date(99, 2, 12).before(new Date (99, 2, 18)) 返回true。
使用 compareTo() 方法,它是由 Comparable 接口定义的,Date 类实现了这个接口。

使用 SimpleDateFormat 格式化日期

SimpleDateFormat 是一个以语言环境敏感的方式来格式化和分析日期的类。SimpleDateFormat 允许你选择任何用户自定义日期时间格式来运行。例如:

Date dNow = new Date( );
SimpleDateFormat ft = new SimpleDateFormat ("yyyy-MM-dd hh:mm:ss");
System.out.println("当前时间为: " + ft.format(dNow));
//当前时间为: 2018-09-06 10:16:34

Java 休眠(sleep)

sleep()使当前线程进入停滞状态(阻塞当前线程),让出CPU的使用、目的是不让当前线程独自霸占该进程所获的CPU资源,以留一定时间给其他线程执行的机会。
你可以让程序休眠一毫秒的时间或者到您的计算机的寿命长的任意段时间。例如,下面的程序会休眠3秒:

import java.util.*;
  
public class SleepDemo {
   public static void main(String args[]) {
      try { 
         System.out.println(new Date( ) + "\n"); 
         Thread.sleep(1000*3);   // 休眠3秒
         System.out.println(new Date( ) + "\n"); 
      } catch (Exception e) { 
          System.out.println("Got an exception!"); 
      }
   }
}

Calendar类

我们现在已经能够格式化并创建一个日期对象了,但是我们如何才能设置和获取日期数据的特定部分呢,比如说小时,日,或者分钟? 我们又如何在日期的这些部分加上或者减去值呢? 答案是使用Calendar 类。

Calendar c1 = Calendar.getInstance();
// 获得年份
int year = c1.get(Calendar.YEAR);
// 获得月份
int month = c1.get(Calendar.MONTH) + 1;
// 获得日期
int date = c1.get(Calendar.DATE);
// 获得小时
int hour = c1.get(Calendar.HOUR_OF_DAY);
// 获得分钟
int minute = c1.get(Calendar.MINUTE);
// 获得秒
int second = c1.get(Calendar.SECOND);
// 获得星期几(注意(这个与Date类是不同的):1代表星期日、2代表星期1、3代表星期二,以此类推)
int day = c1.get(Calendar.DAY_OF_WEEK);

方法

在前面几个章节中我们经常使用到 System.out.println(),那么它是什么呢?
println() 是一个方法。
System 是系统类。
out 是标准输出对象。
这句话的用法是调用系统类 System 中的标准输出对象 out 中的方法 println()。

方法的定义

一般情况下,定义一个方法包含以下语法:

修饰符 返回值类型 方法名(参数类型 参数名){
    ...
    方法体
    ...
    return 返回值;
}

方法包含一个方法头和一个方法体。下面是一个方法的所有部分:
修饰符:修饰符,这是可选的,告诉编译器如何调用该方法。定义了该方法的访问类型。
返回值类型 :方法可能会返回值。returnValueType 是方法返回值的数据类型。有些方法执行所需的操作,但没有返回值。在这种情况下,returnValueType 是关键字void。
方法名:是方法的实际名称。方法名和参数表共同构成方法签名。
参数类型:参数像是一个占位符。当方法被调用时,传递值给参数。这个值被称为实参或变量。参数列表是指方法的参数类型、顺序和参数的个数。参数是可选的,方法可以不包含任何参数。
方法体:方法体包含具体的语句,定义该方法的功能。
如:
public static int age(int birthday){...}

方法的重载

上面使用的max方法仅仅适用于int型数据。但如果你想得到两个浮点类型数据的最大值呢? 解决方法是创建另一个有相同名字但参数不同的方法,如下面代码所示:

public static double max(double num1, double num2) {
  if (num1 > num2)
    return num1;
  else
    return num2;
}

如果你调用max方法时传递的是int型参数,则 int型参数的max方法就会被调用;
如果传递的是double型参数,则double类型的max方法体会被调用,这叫做方法重载;
就是说一个类的两个方法拥有相同的名字,但是有不同的参数列表。
Java编译器根据方法签名判断哪个方法应该被调用。
方法重载可以让程序更清晰易读。执行密切相关任务的方法应该使用相同的名字。
重载的方法必须拥有不同的参数列表。你不能仅仅依据修饰符或者返回类型的不同来重载方法。

变量作用域

变量的范围是程序中该变量可以被引用的部分。
方法内定义的变量被称为局部变量。
局部变量的作用范围从声明开始,直到包含它的块结束。
局部变量必须声明才可以使用。
方法的参数范围涵盖整个方法。参数实际上是一个局部变量。
for循环的初始化部分声明的变量,其作用范围在整个循环。
但循环体内声明的变量其适用范围是从它声明到循环体结束。它包含如下所示的变量声明:

构造方法

当一个对象被创建时候,构造方法用来初始化该对象。构造方法和它所在类的名字相同,但构造方法没有返回值。 通常会使用构造方法给一个类的实例变量赋初值,或者执行其它必要的步骤来创建一个完整的对象。
不管你是否自定义构造方法,所有的类都有构造方法,因为Java自动提供了一个默认构造方法,默认构造方法的访问修改符和类的访问修改符相同(类为 public,构造函数也为 public;类改为 protected,构造函数也改为 protected)。
一旦你定义了自己的构造方法,默认构造方法就会失效。

实例 下面是一个使用构造方法的例子:

// 一个简单的构造函数
class MyClass {
  int x;
 
  // 以下是构造函数
  MyClass() {
    x = 10;
  }
}

大多时候需要一个有参数的构造方法。

// 一个简单的构造函数
class MyClass {
  int x;
 
  // 以下是构造函数
  MyClass(int i ) {
    x = i;
  }
}

流(Stream)、文件(File)和IO

Java.io 包几乎包含了所有操作输入、输出需要的类。所有这些流类代表了输入源和输出目标。
Java.io 包中的流支持很多种格式,比如:基本类型、对象、本地化字符集等等。
一个流可以理解为一个数据的序列。输入流表示从一个源读取数据,输出流表示向一个目标写数据。
Java 为 I/O 提供了强大的而灵活的支持,使其更广泛地应用到文件传输和网络编程中。
但本节讲述最基本的和流与 I/O 相关的功能。我们将通过一个个例子来学习这些功能。

读取控制台输入

Java 的控制台输入由 System.in 完成。
为了获得一个绑定到控制台的字符流,你可以把 System.in 包装在一个 BufferedReader 对象中来创建一个字符流。
下面是创建 BufferedReader 的基本语法:

BufferedReader br = new BufferedReader(new 
                      InputStreamReader(System.in)); 

BufferedReader 对象创建后,我们便可以使用 read() 方法从控制台读取一个字符,或者用 readLine() 方法读取一个字符串。

从控制台读取多字符输入

//使用 BufferedReader 在控制台读取字符
 
import java.io.*;
 
public class BRRead {
    public static void main(String args[]) throws IOException {
        char c;
        // 使用 System.in 创建 BufferedReader
        BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
        System.out.println("输入字符, 按下 'q' 键退出。");
        // 读取字符
        do {
            c = (char) br.read();
            System.out.println(c);
        } while (c != 'q');
    }
}

读写文件

如前所述,一个流被定义为一个数据序列。输入流用于从源读取数据,输出流用于向目标写数据。

FileInputStream

该流用于从文件读取数据,它的对象可以用关键字 new 来创建。
有多种构造方法可用来创建对象。
可以使用字符串类型的文件名来创建一个输入流对象来读取文件:
InputStream f = new FileInputStream("C:/java/hello");
也可以使用一个文件对象来创建一个输入流对象来读取文件。我们首先得使用 File() 方法来创建一个文件对象: File f = new File("C:/java/hello");
InputStream out = new FileInputStream(f);

FileOutputStream

该类用来创建一个文件并向文件中写数据。
如果该流在打开文件进行输出前,目标文件不存在,那么该流会创建该文件。
有两个构造方法可以用来创建 FileOutputStream 对象。
使用字符串类型的文件名来创建一个输出流对象:
OutputStream f = new FileOutputStream("C:/java/hello")

下面是一个演示 InputStream 和 OutputStream 用法的例子:

import java.io.*;
 
public class fileStreamTest {
    public static void main(String args[]) {
        try {
            byte bWrite[] = { 11, 21, 3, 40, 5 };
            OutputStream os = new FileOutputStream("test.txt");
            for (int x = 0; x < bWrite.length; x++) {
                os.write(bWrite[x]); // writes the bytes
            }
            os.close();
 
            InputStream is = new FileInputStream("test.txt");
            int size = is.available();
 
            for (int i = 0; i < size; i++) {
                System.out.print((char) is.read() + "  ");
            }
            is.close();
        } catch (IOException e) {
            System.out.print("Exception");
        }
    }
}

文件和I/O

还有一些关于文件和I/O的类,我们也需要知道:
File Class(类)
FileReader Class(类)
FileWriter Class(类)

Java中的目录

创建目录:

File类中有两个方法可以用来创建文件夹:
mkdir( )方法创建一个文件夹,成功则返回true,失败则返回false。失败表明File对象指定的路径已经存在,或者由于整个路径还不存在,该文件夹不能被创建。
mkdirs()方法创建一个文件夹和它的所有父文件夹。
下面的例子创建 "/tmp/user/java/bin"文件夹:

import java.io.File;
 
public class CreateDir {
    public static void main(String args[]) {
        String dirname = "/tmp/user/java/bin";
        File d = new File(dirname);
        // 现在创建目录
        d.mkdirs();
    }
}

编译并执行上面代码来创建目录 "/tmp/user/java/bin"。 注意: Java 在 UNIX 和 Windows 自动按约定分辨文件路径分隔符。如果你在 Windows 版本的 Java 中使用分隔符 (/) ,路径依然能够被正确解析。

读取目录

一个目录其实就是一个 File 对象,它包含其他文件和文件夹。

泛型

Java泛型设计原则:只要在编译时期没有出现警告,那么运行时期就不会出现ClassCastException异常.

泛型:把类型明确的工作推迟到创建对象或调用方法的时候才去明确的特殊的类型

参数化类型: 把类型当作是参数一样传递
<数据类型> 只能是引用类型

相关术语:
ArrayList中的E称为类型参数变量
ArrayList中的Integer称为实际类型参数
整个称为ArrayList泛型类型
整个ArrayList称为参数化的类型ParameterizedType

有了泛型以后:
代码更加简洁【不用强制转换】
程序更加健壮【只要编译时期没有警告,那么运行时期就不会出现ClassCastException异常】
可读性和稳定性【在编写集合的时候,就限定了类型】

在创建集合的时候,我们明确了集合的类型了,所以我们可以使用增强for来遍历集合!

        //创建集合对象
        ArrayList<String> list = new ArrayList<>();

        list.add("hello");
        list.add("world");
        list.add("java");

        //遍历,由于明确了类型.我们可以增强for
        for (String s : list) {
            System.out.println(s);
       }

Java的泛型是伪泛型,这是因为Java在编译期间,所有的泛型信息都会被擦掉,这也就是通常所说类型擦除 。

List<Integer> list = new ArrayList<>();

list.add(12);
//这里直接添加会报错
list.add("a");
Class<? extends List> clazz = list.getClass();
Method add = clazz.getDeclaredMethod("add", Object.class);
//但是通过反射添加,是可以的
add.invoke(list, "kl");

System.out.println(list)

泛型一般有三种使用方式:泛型类、泛型接口、泛型方法。

泛型类:

泛型类就是把泛型定义在类上,用户使用该类的时候,才把类型明确下来….这样的话,用户明确了什么类型,该类就代表着什么类型…用户在使用的时候就不用担心强转的问题,运行时转换异常的问题了。

在类上定义的泛型,在类的方法中也可以使用!

/*
    1:把泛型定义在类上
    2:类型变量定义在类上,方法中也可以使用
 */
public class ObjectTool<T> {
    private T obj;

    public T getObj() {
        return obj;
    }

    public void setObj(T obj) {
        this.obj = obj;
    }
}

泛型类就是把泛型定义在类上,用户使用该类的时候,才把类型明确下来….这样的话,用户明确了什么类型,该类就代表着什么类型…用户在使用的时候就不用担心强转的问题,运行时转换异常的问题了。

在类上定义的泛型,在类的方法中也可以使用!

public static void main(String[] args) {
        //创建对象并指定元素类型
        ObjectTool<String> tool = new ObjectTool<>();

        tool.setObj(new String("钟福成"));
        String s = tool.getObj();
        System.out.println(s);


        //创建对象并指定元素类型
        ObjectTool<Integer> objectTool = new ObjectTool<>();
        /**
         * 如果我在这个对象里传入的是String类型的,它在编译时期就通过不了了.
         */
        objectTool.setObj(10);
        int i = objectTool.getObj();
        System.out.println(i);
    }

泛型接口 :

public interface Generator<T> {
    public T method();
}

实现泛型接口,不指定类型:

class GeneratorImpl<T> implements Generator<T>{
    @Override
    public T method() {
        return null;
    }
}

实现泛型接口,指定类型:

class GeneratorImpl<T> implements Generator<String>{
    @Override
    public String method() {
        return "hello";
    }
}

泛型方法 :

   public static < E > void printArray( E[] inputArray )
   {         
         for ( E element : inputArray ){        
            System.out.printf( "%s ", element );
         }
         System.out.println();
    }

使用:

// 创建不同类型数组: Integer, Double 和 Character
Integer[] intArray = { 1, 2, 3 };
String[] stringArray = { "Hello", "World" };
printArray( intArray  ); 
printArray( stringArray  ); 

常用的通配符为: T,E,K,V,?

? 表示不确定的 java 类型
T (type) 表示具体的一个java类型
K V (key value) 分别代表java键值中的Key Value
E (element) 代表Element

泛型的应用

只写一个抽象DAO,别的DAO只要继承该抽象DAO,就有对应的方法了。

要实现这样的效果,肯定是要用到泛型的。因为在抽象DAO中,是不可能知道哪一个DAO会继承它自己,所以是不知道其具体的类型的。而泛型就是在创建的时候才指定其具体的类型。

抽象DAO

public abstract class BaseDao<T> {

    //模拟hibernate....
    private Session session;
    private Class clazz;


    //哪个子类调的这个方法,得到的class就是子类处理的类型(非常重要)
    public BaseDao(){
        Class clazz = this.getClass();  //拿到的是子类
        ParameterizedType  pt = (ParameterizedType) clazz.getGenericSuperclass();  //BaseDao<Category>
        clazz = (Class) pt.getActualTypeArguments()[0];
        System.out.println(clazz);

    }


    public void add(T t){
        session.save(t);
    }

    public T find(String id){
        return (T) session.get(clazz, id);
    }

    public void update(T t){
        session.update(t);
    }

    public void delete(String id){
        T t = (T) session.get(clazz, id);
        session.delete(t);
    }

}

继承抽象DAO,该实现类就有对应的增删改查的方法了。 CategoryDao

public class CategoryDao extends BaseDao<Category> {

}

BookDao

public class BookDao extends BaseDao<Book> {

}

注解

注解其实就是两个作用: 让编译器检查代码
将数据注入到方法、成员变量、类上

现在的开发都推崇使用注解来进行开发,这样就可以免去写XML配置了,十分方便的一项技术~

注解:Annotation….
注解其实就是代码中的特殊标记,这些标记可以在编译、类加载、运行时被读取,并执行相对应的处理。

传统的方式,我们是通过配置文件(xml文件)来告诉类是如何运行的。
有了注解技术以后,我们就可以通过注解告诉类如何运行
例如:我们以前编写Servlet的时候,需要在web.xml文件配置具体的信息

基本Annotation

在java.lang包下存在着5个基本的Annotation,其中有3个Annotation我们是非常常见的了。

@Override

重写注解

如果我们使用IDE重写父类的方法,我们就可以看见它了。那它有什么用呢
@Overried是告诉编译器要检查该方法是实现父类的…可以帮我们避免一些低级的错误…
比如,我们在实现equals()方法的时候,把euqals()打错了,那么编译器就会发现该方法并不是实现父类的,与注解@Override冲突,于是就会给予错误。

@Deprecated

过时注解

该注解也非常常见,Java在设计的时候,可能觉得某些方法设计得不好,为了兼容以前的程序,是不能直接把它抛弃的,于是就设置它为过时。

Date对象中的toLocalString()就被设置成过时了

 @Deprecated
    public String toLocaleString() {
        DateFormat formatter = DateFormat.getDateTimeInstance();
        return formatter.format(this);
    }

@SuppressWarnings

抑制编译器警告注解

该注解在我们写程序的时候并不是很常见,我们可以用它来让编译器不给予我们警告

当我们在使用集合的时候,如果没有指定泛型,那么会提示安全检查的警告