欢迎大家关注 github.com/hsfxuebao/j… ,希望对大家有所帮助,要是觉得可以的话麻烦给点一下Star哈
1. 考虑使用静态工厂方法替代构造方法
一个类允许客户端获取其实例的传统方式是提供一个公共构造方法。 其实还有另一种技术应该成为每个程序员工具箱的一部分。 一个类可以提供一个公共静态工厂方法,它只是一个返回类实例的静态方法。 下面是一个Boolean简单的例子(boolean基本类型的包装类)。 此方法将boolean基本类型转换为Boolean对象引用:
public static Boolean valueOf(boolean b) {
return b ? Boolean.TRUE : Boolean.FALSE;
}
注意,静态工厂方法与设计模式中的工厂方法模式不同[Gamma95]。本条目中描述的静态工厂方法在设计模式中没有直接的等价。
类可以为其客户端提供静态工厂方法,而不是公共构造方法。提供静态工厂方法而不是公共构造方法有优点也有缺点。
静态工厂方法的一个优点是,不像构造方法,它们是有名字的。 如果构造方法的参数本身并不描述被返回的对象,则具有精心选择名称的静态工厂更易于使用,并且生成的客户端代码更易于阅读。 例如,返回一个可能为素数的BigInteger的构造方法BigInteger(int,int,Random)可以更好地表示为名为BigInteger.probablePrime的静态工厂方法。 (这个方法是在Java 1.4中添加的。)
一个类只能有一个给定签名的构造方法。 程序员知道通过提供两个构造方法来解决这个限制,这两个构造方法的参数列表只有它们的参数类型的顺序不同。 这是一个非常糟糕的主意。 这样的API用户将永远不会记得哪个构造方法是哪个,最终会错误地调用。 阅读使用这些构造方法的代码的人只有在参考类文档的情况下才知道代码的作用。
因为他们有名字,所以静态工厂方法不会受到上面讨论中的限制。在类中似乎需要具有相同签名的多个构造方法的情况下,用静态工厂方法替换构造方法,并仔细选择名称来突出它们的差异。
**静态工厂方法的第二个优点是,与构造方法不同,它们不需要每次调用时都创建一个新对象。**这允许不可变的类(条目17)使用预先构建的实例,或者在构造时缓存实例,并反复分配它们以避免创建不必要的重复对象。boolean.valueof(boolean)方法说明了这种方法:它从不创建对象。这种技术类似于享元模式(Flyweight)[Gamma95]。如果经常请求等价对象,那么它可以极大地提高性能,特别是如果在创建它们非常昂贵的情况下。
静态工厂方法从重复调用返回相同对象的能力允许类保持在任何时候存在的实例的严格控制。这样做的类被称为实例控制( instance-controlled)。编写实例控制类的原因有很多。实例控制允许一个类来保证它是一个单例(3)项或不可实例化的(条目4)。同时,它允许一个不可变的值类(条目17)保证不存在两个相同的实例:当且仅当a== b时a.equals(b)。这是享元模式的基础[Gamma95]。Enum类型(条目34)提供了这个保证。
静态工厂方法的第三个优点是,与构造方法不同,它们可以返回其返回类型的任何子类型的对象。 这为你在选择返回对象的类时提供了很大的灵活性。
这种灵活性的一个应用是API可以返回对象而不需要公开它的类。 以这种方式隐藏实现类会使 API非常紧凑。 这种技术适用于基于接口的框架(条目20),其中接口为静态工厂方法提供自然返回类型。
在Java 8之前,接口不能有静态方法。根据约定,一个名为Type的接口的静态工厂方法被放入一个非实例化的伙伴类(companion class)(条目4)Types类中。例如,Java集合框架有45个接口的实用工具实现,提供不可修改的集合、同步集合等等。几乎所有这些实现都是通过静态工厂方法在一个非实例类(java .util. collections)中导出的。返回对象的类都是非公开的。
Collections框架API的规模要比它之前输出的45个单独的公共类要小得多,每个类有个便利类的实现。不仅是API的大部分减少了,还包括概念上的权重:程序员必须掌握的概念的数量和难度,才能使用API。程序员知道返回的对象恰好有其接口指定的API,因此不需要为实现类读阅读额外的类文档。此外,使用这种静态工厂方法需要客户端通过接口而不是实现类来引用返回的对象,这通常是良好的实践(条目64)。
从Java 8开始,接口不能包含静态方法的限制被取消了,所以通常没有理由为接口提供一个不可实例化的伴随类。 很多公开的静态成员应该放在这个接口本身。 但是,请注意,将这些静态方法的大部分实现代码放在单独的包私有类中仍然是必要的。 这是因为Java 8要求所有接口的静态成员都是公共的。 Java 9允许私有静态方法,但静态属性和静态成员类仍然需要公开。
静态工厂的第四个优点是返回对象的类可以根据输入参数的不同而不同。 声明的返回类型的任何子类都是允许的。 返回对象的类也可以随每次发布而不同。
EnumSet类(条目 36)没有公共构造方法,只有静态工厂。 在OpenJDK实现中,它们根据底层枚举类型的大小返回两个子类中的一个的实例:如果大多数枚举类型具有64个或更少的元素,静态工厂将返回一个RegularEnumSet实例, 返回一个long类型;如果枚举类型具有六十五个或更多元素,则工厂将返回一个JumboEnumSet实例,返回一个long类型的数组。
这两个实现类的存在对于客户端是不可见的。 如果RegularEnumSet不再为小枚举类型提供性能优势,则可以在未来版本中将其淘汰,而不会产生任何不良影响。 同样,未来的版本可能会添加EnumSet的第三个或第四个实现,如果它证明有利于性能。 客户端既不知道也不关心他们从工厂返回的对象的类别; 他们只关心它是EnumSet的一些子类。
**静态工厂的第5个优点是,在编写包含该方法的类时,返回的对象的类不需要存在。**这种灵活的静态工厂方法构成了服务提供者框架的基础,比如Java数据库连接API(JDBC)。服务提供者框架是提供者实现服务的系统,并且系统使得实现对客户端可用,从而将客户端从实现中分离出来。
服务提供者框架中有三个基本组:服务接口,它表示实现;提供者注册API,提供者用来注册实现;以及服务访问API,客户端使用该API获取服务的实例。服务访问API允许客户端指定选择实现的标准。在缺少这样的标准的情况下,API返回一个默认实现的实例,或者允许客户端通过所有可用的实现进行遍历。服务访问API是灵活的静态工厂,它构成了服务提供者框架的基础。
服务提供者框架的一个可选的第四个组件是一个服务提供者接口,它描述了一个生成服务接口实例的工厂对象。在没有服务提供者接口的情况下,必须对实现进行反射实例化(条目65)。在JDBC的情况下,Connection扮演服务接口的一部分,DriverManager.registerDriver提供程序注册API、DriverManager.getConnection是服务访问API,Driver是服务提供者接口。
服务提供者框架模式有许多变种。 例如,服务访问API可以向客户端返回比提供者提供的更丰富的服务接口。 这是桥接模式[Gamma95]。 依赖注入框架(条目5)可以被看作是强大的服务提供者。 从Java 6开始,平台包含一个通用的服务提供者框架java.util.ServiceLoader,所以你不需要,一般也不应该自己编写(条目59)。 JDBC不使用ServiceLoader,因为前者早于后者。
**只提供静态工厂方法的主要限制是,没有公共或受保护构造方法的类不能被子类化。**例如,在Collections框架中不可能将任何方便实现类子类化。可以说,这可能是因祸得福,因为它鼓励程序员使用组合而不是继承(条目18),并且是不可变类型(条目17)。
**静态工厂方法的第二个缺点是,程序员很难找到它们。**它们不像构造方法那样在API文档中突出,因此很难找出如何实例化一个提供静态工厂方法而不是构造方法的类。Javadoc工具可能有一天会引起对静态工厂方法的注意。与此同时,可以通过将注意力吸引到类或接口文档中的静态工厂以及遵守通用的命名约定来减少这个问题。下面是一些静态工厂方法的常用名称。以下清单并非完整:
- from——A类型转换方法,它接受单个参数并返回此类型的相应实例,例如:
Date d = Date.from(instant); - of——一个聚合方法,接受多个参数并返回该类型的实例,并把他们合并在一起,例如:
Set<Rank> faceCards = EnumSet.of(JACK, QUEEN, KING); - valueOf——from和to更为详细的替代方式,例如:
BigInteger prime = BigInteger.valueOf(Integer.MAX_VALUE); - instance或getInstance——返回一个由其参数(如果有的话)描述的实例,但不能说它具有和参数相同的值,例如:
StackWalker luke = StackWalker.getInstance(options); - create 或 newInstance——与instance 或 getInstance类似,除了该方法保证每个调用返回一个新的实例,例如:
Object newArray = Array.newInstance(classObject, arrayLen); - getType——与getInstance类似,但是如果在工厂方法中不同的类中使用。Type是工厂方法返回的对象类型,例如:
FileStore fs = Files.getFileStore(path); - newType——与newInstance类似,但是如果在工厂方法中不同的类中使用。Type是工厂方法返回的对象类型,例如:
BufferedReader br = Files.newBufferedReader(path); - type—— getType 和 newType简洁的替代方式,例如:
List<Complaint> litany = Collections.list(legacyLitany);
总之,静态工厂方法和公共构造方法都有它们的用途,并且了解它们的相对优点是值得的。通常,静态工厂更可取,因此避免在没有考虑静态工厂的情况下提供公共构造方法。
2:当构造方法参数过多时使用builder模式
静态工厂和构造方法都有一个限制:它们不能很好地扩展到很多可选参数的情景。请考虑一个代表包装食品上的营养成分标签的例子。这些标签有几个必需的属性——每次建议的摄入量,每罐的份量和每份卡路里 ,以及超过20个可选的属性——总脂肪、饱和脂肪、反式脂肪、胆固醇、钠等等。大多数产品都有非零值,只有少数几个可选属性。
应该为这样的类编写什么样的构造方法或静态工厂?传统上,程序员使用了可伸缩(telescoping constructor)构造方法模式,在这种模式中,只提供了一个只所需参数的构造函数,另一个只有一个可选参数,第三个有两个可选参数,等等,最终在构造函数中包含所有可选参数。这就是它在实践中的样子。为了简便起见,只显示了四个可选属性:
// Telescoping constructor pattern - does not scale well!
public class NutritionFacts {
private final int servingSize; // (mL) required
private final int servings; // (per container) required
private final int calories; // (per serving) optional
private final int fat; // (g/serving) optional
private final int sodium; // (mg/serving) optional
private final int carbohydrate; // (g/serving) optional
public NutritionFacts(int servingSize, int servings) {
this(servingSize, servings, 0);
}
public NutritionFacts(int servingSize, int servings,
int calories) {
this(servingSize, servings, calories, 0);
}
public NutritionFacts(int servingSize, int servings,
int calories, int fat) {
this(servingSize, servings, calories, fat, 0);
}
public NutritionFacts(int servingSize, int servings,
int calories, int fat, int sodium) {
this(servingSize, servings, calories, fat, sodium, 0);
}
public NutritionFacts(int servingSize, int servings,
int calories, int fat, int sodium, int carbohydrate) {
this.servingSize = servingSize;
this.servings = servings;
this.calories = calories;
this.fat = fat;
this.sodium = sodium;
this.carbohydrate = carbohydrate;
}
}
复制代码
当想要创建一个实例时,可以使用包含所有要设置的参数的最短参数列表的构造方法:
NutritionFacts cocaCola = new NutritionFacts(240, 8, 100, 0, 35, 27);
复制代码
通常情况下,这个构造方法的调用需要许多你不想设置的参数,但是你不得不为它们传递一个值。 在这种情况下,我们为fat属性传递了0值。 『只有』六个参数可能看起来并不那么糟糕,但随着参数数量的增加,它会很快失控。
简而言之,可伸缩构造方法模式是有效的,但是当有很多参数时,很难编写客户端代码,而且很难读懂它。读者不知道这些值是什么意思,并且必须仔细地计算参数才能找到答案。一长串相同类型的参数可能会导致一些细微的bug。如果客户端意外地反转了两个这样的参数,编译器并不会抱怨,但是程序在运行时会出现错误行为(条目51)。
当在构造方法中遇到许多可选参数时,另一种选择是JavaBeans模式,在这种模式中,调用一个无参数的构造函数来创建对象,然后调用setter方法来设置每个必需的参数和可选参数:
// JavaBeans Pattern - allows inconsistency, mandates mutability
public class NutritionFacts {
// Parameters initialized to default values (if any)
private int servingSize = -1; // Required; no default value
private int servings = -1; // Required; no default value
private int calories = 0;
private int fat = 0;
private int sodium = 0;
private int carbohydrate = 0;
public NutritionFacts() { }
// Setters
public void setServingSize(int val) { servingSize = val; }
public void setServings(int val) { servings = val; }
public void setCalories(int val) { calories = val; }
public void setFat(int val) { fat = val; }
public void setSodium(int val) { sodium = val; }
public void setCarbohydrate(int val) { carbohydrate = val; }
}
复制代码
这种模式没有伸缩构造方法模式的缺点。有点冗长,但创建实例很容易,并且易于阅读所生成的代码:
NutritionFacts cocaCola = new NutritionFacts();
cocaCola.setServingSize(240);
cocaCola.setServings(8);
cocaCola.setCalories(100);
cocaCola.setSodium(35);
cocaCola.setCarbohydrate(27);
复制代码
不幸的是,JavaBeans模式本身有严重的缺陷。由于构造方法在多次调用中被分割,所以在构造过程中JavaBean可能处于不一致的状态。该类没有通过检查构造参数的有效性来执行一致性的选项。在不一致的状态下尝试使用对象可能会导致与包含bug的代码大相径庭的错误,因此很难调试。一个相关的缺点是,JavaBeans模式排除了让类不可变的可能性(条目17),并且需要在程序员的部分增加工作以确保线程安全。
当它的构造完成时,手动“冻结”对象,并且不允许它在解冻之前使用,可以减少这些缺点,但是这种变体在实践中很难使用并且很少使用。 而且,在运行时会导致错误,因为编译器无法确保程序员在使用对象之前调用freeze方法。
幸运的是,还有第三种选择,它结合了可伸缩构造方法模式的安全性和javabean模式的可读性。 它是Builder模式[Gamma95]的一种形式。客户端不直接调用所需的对象,而是调用构造方法(或静态工厂),并使用所有必需的参数,并获得一个builder对象。然后,客户端调用builder对象的setter相似方法来设置每个可选参数。最后,客户端调用一个无参的build方法来生成对象,该对象通常是不可变的。Builder通常是它所构建的类的一个静态成员类(条目24)。以下是它在实践中的示例:
// Builder Pattern
public class NutritionFacts {
private final int servingSize;
private final int servings;
private final int calories;
private final int fat;
private final int sodium;
private final int carbohydrate;
public static class Builder {
// Required parameters
private final int servingSize;
private final int servings;
// Optional parameters - initialized to default values
private int calories = 0;
private int fat = 0;
private int sodium = 0;
private int carbohydrate = 0;
public Builder(int servingSize, int servings) {
this.servingSize = servingSize;
this.servings = servings;
}
public Builder calories(int val) {
calories = val;
return this;
}
public Builder fat(int val) {
fat = val;
return this;
}
public Builder sodium(int val) {
sodium = val;
return this;
}
public Builder carbohydrate(int val) {
carbohydrate = val;
return this;
}
public NutritionFacts build() {
return new NutritionFacts(this);
}
}
private NutritionFacts(Builder builder) {
servingSize = builder.servingSize;
servings = builder.servings;
calories = builder.calories;
fat = builder.fat;
sodium = builder.sodium;
carbohydrate = builder.carbohydrate;
}
}
复制代码
NutritionFacts类是不可变的,所有的参数默认值都在一个地方。builder的setter方法返回builder本身,这样调用就可以被链接起来,从而生成一个流畅的API。下面是客户端代码的示例:
NutritionFacts cocaCola = new NutritionFacts.Builder(240, 8)
.calories(100).sodium(35).carbohydrate(27).build();
复制代码
这个客户端代码很容易编写,更重要的是易于阅读。 Builder模式模拟Python和Scala中的命名可选参数。
为了简洁起见,省略了有效性检查。 要尽快检测无效参数,检查builder的构造方法和方法中的参数有效性。 在build方法调用的构造方法中检查包含多个参数的不变性。为了确保这些不变性不受攻击,在从builder复制参数后对对象属性进行检查(条目 50)。 如果检查失败,则抛出IllegalArgumentException异常(条目 72),其详细消息指示哪些参数无效(条目 75)。
Builder模式非常适合类层次结构。 使用平行层次的builder,每个嵌套在相应的类中。 抽象类有抽象的builder; 具体的类有具体的builder。 例如,考虑代表各种比萨饼的根层次结构的抽象类:
// Builder pattern for class hierarchies
import java.util.EnumSet;
import java.util.Objects;
import java.util.Set;
public abstract class Pizza {
public enum Topping {HAM, MUSHROOM, ONION, PEPPER, SAUSAGE}
final Set<Topping> toppings;
abstract static class Builder<T extends Builder<T>> {
EnumSet<Topping> toppings = EnumSet.noneOf(Topping.class);
public T addTopping(Topping topping) {
toppings.add(Objects.requireNonNull(topping));
return self();
}
abstract Pizza build();
// Subclasses must override this method to return "this"
protected abstract T self();
}
Pizza(Builder<?> builder) {
toppings = builder.toppings.clone(); // See Item 50
}
}
复制代码
请注意,Pizza.Builder是一个带有递归类型参数( recursive type parameter)(条目 30)的泛型类型。 这与抽象的self方法一起,允许方法链在子类中正常工作,而不需要强制转换。 Java缺乏自我类型的这种变通解决方法被称为模拟自我类型(simulated self-type)的习惯用法。
这里有两个具体的Pizza的子类,其中一个代表标准的纽约风格的披萨,另一个是半圆形烤乳酪馅饼。前者有一个所需的尺寸参数,而后者则允许指定酱汁是否应该在里面或在外面:
import java.util.Objects;
public class NyPizza extends Pizza {
public enum Size { SMALL, MEDIUM, LARGE }
private final Size size;
public static class Builder extends Pizza.Builder<Builder> {
private final Size size;
public Builder(Size size) {
this.size = Objects.requireNonNull(size);
}
@Override public NyPizza build() {
return new NyPizza(this);
}
@Override protected Builder self() {
return this;
}
}
private NyPizza(Builder builder) {
super(builder);
size = builder.size;
}
}
public class Calzone extends Pizza {
private final boolean sauceInside;
public static class Builder extends Pizza.Builder<Builder> {
private boolean sauceInside = false; // Default
public Builder sauceInside() {
sauceInside = true;
return this;
}
@Override public Calzone build() {
return new Calzone(this);
}
@Override protected Builder self() {
return this;
}
}
private Calzone(Builder builder) {
super(builder);
sauceInside = builder.sauceInside;
}
}
复制代码
请注意,每个子类builder中的build方法被声明为返回正确的子类:NyPizza.Builder的build方法返回NyPizza,而Calzone.Builder中的build方法返回Calzone。 这种技术,其一个子类的方法被声明为返回在超类中声明的返回类型的子类型,称为协变返回类型( covariant return typing)。 它允许客户端使用这些builder,而不需要强制转换。
这些“分层builder”的客户端代码基本上与简单的NutritionFacts builder的代码相同。为了简洁起见,下面显示的示例客户端代码假设枚举常量的静态导入:
NyPizza pizza = new NyPizza.Builder(SMALL)
.addTopping(SAUSAGE).addTopping(ONION).build();
Calzone calzone = new Calzone.Builder()
.addTopping(HAM).sauceInside().build();
复制代码
builder对构造方法的一个微小的优势是,builder可以有多个可变参数,因为每个参数都是在它自己的方法中指定的。或者,builder可以将传递给多个调用的参数聚合到单个属性中,如前面的addTopping方法所演示的那样。
Builder模式非常灵活。 单个builder可以重复使用来构建多个对象。 builder的参数可以在构建方法的调用之间进行调整,以改变创建的对象。 builder可以在创建对象时自动填充一些属性,例如每次创建对象时增加的序列号。
Builder模式也有缺点。为了创建对象,首先必须创建它的builder。虽然创建这个builder的成本在实践中不太可能被注意到,但在性能关键的情况下可能会出现问题。而且,builder模式比伸缩构造方法模式更冗长,因此只有在有足够的参数时才值得使用它,比如四个或更多。但是请记住,如果希望在将来添加更多的参数。但是,如果从构造方法或静态工厂开始,并切换到builder,当类演化到参数数量失控的时候,过时的构造方法或静态工厂就会面临尴尬的处境。因此,所以,最好从一开始就创建一个builder。
总而言之,当设计类的构造方法或静态工厂的参数超过几个时,Builder模式是一个不错的选择,特别是如果许多参数是可选的或相同类型的。客户端代码比使用伸缩构造方法(telescoping constructors)更容易读写,并且builder比JavaBeans更安全。
3. 使用私有构造方法或枚类实现Singleton属性
单例是一个仅实例化一次的类[Gamma95]。单例对象通常表示无状态对象,如函数(条目 24)或一个本质上唯一的系统组件。让一个类成为单例会使测试它的客户变得困难,因为除非实现一个作为它类型的接口,否则不可能用一个模拟实现替代单例。
有两种常见的方法来实现单例。两者都基于保持构造方法私有和导出公共静态成员以提供对唯一实例的访问。在第一种方法中,成员是final修饰的属性:
// Singleton with public final field
public class Elvis {
public static final Elvis INSTANCE = new Elvis();
private Elvis() { ... }
public void leaveTheBuilding() { ... }
}
复制代码
私有构造方法只调用一次,来初始化公共静态 final Elvis.INSTANCE属性。缺少一个公共的或受保护的构造方法,保证了全局的唯一性:一旦Elvis类被初始化,一个Elvis的实例就会存在——不多也不少。客户端所做的任何事情都不能改变这一点,但需要注意的是:特权客户端可以使用AccessibleObject.setAccessible方法,以反射方式调用私有构造方法(条目 65)。如果需要防御此攻击,请修改构造函数,使其在请求创建第二个实例时抛出异常。
在第二个实现单例的方法中,公共成员是一个静态的工厂方法:
// Singleton with static factory
public class Elvis {
private static final Elvis INSTANCE = new Elvis();
private Elvis() { ... }
public static Elvis getInstance() { return INSTANCE; }
public void leaveTheBuilding() { ... }
}
复制代码
所有对Elvis.getInstance的调用都返回相同的对象引用,并且不会创建其他的Elvis实例(与前面提到的警告相同)。
公共属性方法的主要优点是API明确表示该类是一个单例:公共静态属性是final的,所以它总是包含相同的对象引用。 第二个好处是它更简单。
静态工厂方法的一个优点是,它可以灵活地改变你的想法,无论该类是否为单例而不必更改其API。 工厂方法返回唯一的实例,但是可以修改,比如,返回调用它的每个线程的单独实例。 第二个好处是,如果你的应用程序需要它,可以编写一个泛型单例工厂(generic singleton factory )(条目30)。 使用静态工厂的最后一个优点是方法引用可以用supplier,例如Elvis :: instance等同于Supplier<Elvis>。 除非与这些优点相关的,否则公共属性方法是可取的。
创建一个使用这两种方法的单例类(第12章),仅仅将implements Serializable添加到声明中是不够的。为了维护单例的保证,声明所有的实例属性为transient,并提供一个readResolve方法(条目89)。否则,每当序列化实例被反序列化时,就会创建一个新的实例,在我们的例子中,导致出现新的Elvis实例。为了防止这种情况发生,将这个readResolve方法添加到Elvis类:
// readResolve method to preserve singleton property
private Object readResolve() {
// Return the one true Elvis and let the garbage collector
// take care of the Elvis impersonator.
return INSTANCE;
}
复制代码
实现一个单例的第三种方法是声明单一元素的枚举类:
// Enum singleton - the preferred approach
public enum Elvis {
INSTANCE;
public void leaveTheBuilding() { ... }
}
复制代码
这种方式类似于公共属性方法,但更简洁,提供了免费的序列化机制,并提供了针对多个实例化的坚固保证,即使是在复杂的序列化或反射攻击的情况下。这种方法可能感觉有点不自然,但是单一元素枚举类通常是实现单例的最佳方式。注意,如果单例必须继承Enum以外的父类(尽管可以声明一个Enum来实现接口),那么就不能使用这种方法。
4. 使用私有构造方法执行非实例化
偶尔你会想写一个类,它只是一组静态方法和静态属性。 这样的类获得了不好的名声,因为有些人滥用这些类而避免以面向对象方式思考,但是它们确实有着特殊的用途。 它们可以用来按照java.lang.Math或java.util.Arrays的方式,在基本类型的数值或数组上组织相关的方法。 它们也可以用于将静态方法(包括工厂(条目 1))分组,用于实现某个接口的对象,其方式为java.util.Collections。 (从Java 8开始,你也可以将这些方法放在接口中,假如它是你自己修改的。)最后,这样的类可以用于在final类上对方法进行分组,因为不能将它们放在子类中。
这样的实用类( utility classes)不是设计用来被实例化的:一个实例是没有意义的。然而,在没有显式构造方法的情况下,编译器提供了一个公共的、无参的默认构造方法。对于用户来说,该构造方法与其他构造方法没有什么区别。在已发布的 API中经常看到无意识的被实例的类。
**试图通过创建抽象类来强制执行非实例化是行不通的。**该类可以被子类化,子类可以被实例化。此外,它误导用户认为该类是为继承而设计的(条目 19)。不过,有一个简单的方法来确保非实例化。只有当类不包含显式构造方法时,才会生成一个默认构造方法,因此可以通过包含一个私有构造方法来实现类的非实例化:
// Noninstantiable utility class
public class UtilityClass {
// Suppress default constructor for noninstantiability
private UtilityClass() {
throw new AssertionError();
}
... // Remainder omitted
}
复制代码
因为显式构造方法是私有的,所以在类之外是不可访问的。AssertionError异常不是严格要求的,但是它提供了一种保证,以防在类中意外地调用构造方法。它保证类在任何情况下都不会被实例化。这个习惯用法有点违反直觉,好像构造方法就是设计成不能调用的一样。因此,如前面所示,添加注释是种明智的做法。
这种习惯有一个副作用,阻止了类的子类化。所有的构造方法都必须显式或隐式地调用父类构造方法,而子类则没有可访问的父类构造方法来调用。
5. 使用依赖注入取代硬连接资源(hardwiring resources)
许多类依赖于一个或多个底层资源。例如,拼写检查器依赖于字典。将此类类实现为静态实用工具类并不少见(条目 4):
// Inappropriate use of static utility - inflexible & untestable!
public class SpellChecker {
private static final Lexicon dictionary = ...;
private SpellChecker() {} // Noninstantiable
public static boolean isValid(String word) { ... }
public static List<String> suggestions(String typo) { ... }
}
同样地,将它们实现为单例也并不少见(条目 3):
// Inappropriate use of singleton - inflexible & untestable!
public class SpellChecker {
private final Lexicon dictionary = ...;
private SpellChecker(...) {}
public static INSTANCE = new SpellChecker(...);
public boolean isValid(String word) { ... }
public List<String> suggestions(String typo) { ... }
}
这两种方法都不令人满意,因为他们假设只有一本字典值得使用。在实际中,每种语言都有自己的字典,特殊的字典被用于特殊的词汇表。另外,使用专门的字典来进行测试也是可取的。想当然地认为一本字典就足够了,这是一厢情愿的想法。
可以通过使dictionary属性设置为非final,并添加一个方法来更改现有拼写检查器中的字典,从而让拼写检查器支持多个字典,但是在并发环境中,这是笨拙的、容易出错的和不可行的。静态实用类和单例对于那些行为被底层资源参数化的类来说是不合适的。
所需要的是能够支持类的多个实例(在我们的示例中,即SpellChecker),每个实例都使用客户端所期望的资源(在我们的例子中是dictionary)。满足这一需求的简单模式是在创建新实例时将资源传递到构造方法中。这是依赖项注入(dependency injection)的一种形式:字典是拼写检查器的一个依赖项,当它创建时被注入到拼写检查器中。
// Dependency injection provides flexibility and testability
public class SpellChecker {
private final Lexicon dictionary;
public SpellChecker(Lexicon dictionary) {
this.dictionary = Objects.requireNonNull(dictionary);
}
public boolean isValid(String word) { ... }
public List<String> suggestions(String typo) { ... }
}
依赖注入模式非常简单,许多程序员使用它多年而不知道它有一个名字。 虽然我们的拼写检查器的例子只有一个资源(字典),但是依赖项注入可以使用任意数量的资源和任意依赖图。 它保持了不变性(条目 17),因此多个客户端可以共享依赖对象(假设客户需要相同的底层资源)。 依赖注入同样适用于构造方法,静态工厂(条目 1)和 builder模式(条目 2)。
该模式的一个有用的变体是将资源工厂传递给构造方法。 工厂是可以重复调用以创建类型实例的对象。 这种工厂体现了工厂方法模式(Factory Method pattern )[Gamma95]。 Java 8中引入的Supplier <T>接口非常适合代表工厂。 在输入上采用Supplier<T>的方法通常应该使用有界的通配符类型( bounded wildcard type)(条目 31)约束工厂的类型参数,以允许客户端传入工厂,创建指定类型的任何子类型。 例如,下面是一个使用客户端提供的工厂生成tile的方法:
Mosaic create(Supplier<? extends Tile> tileFactory) { ... }
尽管依赖注入极大地提高了灵活性和可测试性,但它可能使大型项目变得混乱,这些项目通常包含数千个依赖项。使用依赖注入框架(如Dagger[Dagger]、Guice[Guice]或Spring[Spring])可以消除这些混乱。这些框架的使用超出了本书的范围,但是请注意,为手动依赖注入而设计的API非常适合这些框架的使用。
总之,不要使用单例或静态的实用类来实现一个类,该类依赖于一个或多个底层资源,这些资源的行为会影响类的行为,并且不让类直接创建这些资源。相反,将资源或工厂传递给构造方法(或静态工厂或builder模式)。这种称为依赖注入的实践将极大地增强类的灵活性、可重用性和可测试性。
6. 避免创建不必要的对象
在每次需要时重用一个对象而不是创建一个新的相同功能对象通常是恰当的。重用可以更快更流行。如果对象是不可变的(条目 17),它总是可以被重用。
作为一个不应该这样做的极端例子,请考虑以下语句:
String s = new String("bikini"); // DON'T DO THIS!
语句每次执行时都会创建一个新的String实例,而这些对象的创建都不是必需的。String构造方法(“bikini”)的参数本身就是一个bikini实例,它与构造方法创建的所有对象的功能相同。如果这种用法发生在循环中,或者在频繁调用的方法中,就可以毫无必要地创建数百万个String实例。
改进后的版本如下:
String s = "bikini";
该版本使用单个String实例,而不是每次执行时创建一个新实例。此外,它可以保证对象运行在同一虚拟机上的任何其他代码重用,而这些代码恰好包含相同的字符串字面量[JLS,3.10.5]。
通过使用静态工厂方法(static factory methods(项目1),可以避免创建不需要的对象。例如,工厂方法Boolean.valueOf(String) 比构造方法Boolean(String)更可取,后者在Java 9中被弃用。构造方法每次调用时都必须创建一个新对象,而工厂方法永远不需要这样做,在实践中也不需要。除了重用不可变对象,如果知道它们不会被修改,还可以重用可变对象。
一些对象的创建比其他对象的创建要昂贵得多。 如果要重复使用这样一个“昂贵的对象”,建议将其缓存起来以便重复使用。 不幸的是,当创建这样一个对象时并不总是很直观明显的。 假设你想写一个方法来确定一个字符串是否是一个有效的罗马数字。 以下是使用正则表达式完成此操作时最简单方法:
// Performance can be greatly improved!
static boolean isRomanNumeral(String s) {
return s.matches("^(?=.)M*(C[MD]|D?C{0,3})"
+ "(X[CL]|L?X{0,3})(I[XV]|V?I{0,3})$");
}
这个实现的问题在于它依赖于String.matches方法。 虽然String.matches是检查字符串是否与正则表达式匹配的最简单方法,但它不适合在性能临界的情况下重复使用。 问题是它在内部为正则表达式创建一个Pattern实例,并且只使用它一次,之后它就有资格进行垃圾收集。 创建Pattern实例是昂贵的,因为它需要将正则表达式编译成有限状态机(finite state machine)。
为了提高性能,作为类初始化的一部分,将正则表达式显式编译为一个Pattern实例(不可变),缓存它,并在isRomanNumeral方法的每个调用中重复使用相同的实例:
// Reusing expensive object for improved performance
public class RomanNumerals {
private static final Pattern ROMAN = Pattern.compile(
"^(?=.)M*(C[MD]|D?C{0,3})"
+ "(X[CL]|L?X{0,3})(I[XV]|V?I{0,3})$");
static boolean isRomanNumeral(String s) {
return ROMAN.matcher(s).matches();
}
}
如果经常调用,isRomanNumeral的改进版本的性能会显著提升。 在我的机器上,原始版本在输入8个字符的字符串上需要1.1微秒,而改进的版本则需要0.17微秒,速度提高了6.5倍。 性能上不仅有所改善,而且更明确清晰了。 为不可见的Pattern实例创建静态final修饰的属性,并允许给它一个名字,这个名字比正则表达式本身更具可读性。
如果包含isRomanNumeral方法的改进版本的类被初始化,但该方法从未被调用,则ROMAN属性则没必要初始化。 在第一次调用isRomanNumeral方法时,可以通过延迟初始化( lazily initializing)属性(条目 83)来排除初始化,但一般不建议这样做。 延迟初始化常常会导致实现复杂化,而性能没有可衡量的改进(条目 67)。
当一个对象是不可变的时,很明显它可以被安全地重用,但是在其他情况下,它远没有那么明显,甚至是违反直觉的。考虑适配器(adapters)的情况[Gamma95],也称为视图(views)。一个适配器是一个对象,它委托一个支持对象(backing object),提供一个可替代的接口。由于适配器没有超出其支持对象的状态,因此不需要为给定对象创建多个给定适配器的实例。
例如,Map接口的keySet方法返回Map对象的Set视图,包含Map中的所有key。 天真地说,似乎每次调用keySet都必须创建一个新的Set实例,但是对给定Map对象的keySet的每次调用都返回相同的Set实例。 尽管返回的Set实例通常是可变的,但是所有返回的对象在功能上都是相同的:当其中一个返回的对象发生变化时,所有其他对象也都变化,因为它们全部由相同的Map实例支持。 虽然创建keySet视图对象的多个实例基本上是无害的,但这是没有必要的,也没有任何好处。
另一种创建不必要的对象的方法是自动装箱(autoboxing),它允许程序员混用基本类型和包装的基本类型,根据需要自动装箱和拆箱。 自动装箱模糊不清,但不会消除基本类型和装箱基本类型之间的区别。 有微妙的语义区别和不那么细微的性能差异(条目 61)。 考虑下面的方法,它计算所有正整数的总和。 要做到这一点,程序必须使用long类型,因为int类型不足以保存所有正整数的总和:
// Hideously slow! Can you spot the object creation?
private static long sum() {
Long sum = 0L;
for (long i = 0; i <= Integer.MAX_VALUE; i++)
sum += i;
return sum;
}
这个程序的结果是正确的,但由于写错了一个字符,运行的结果要比实际慢很多。变量sum被声明成了Long而不是long,这意味着程序构造了大约231不必要的Long实例(大约每次往Long类型的 sum变量中增加一个long类型构造的实例),把sum变量的类型由Long改为long,在我的机器上运行时间从6.3秒降低到0.59秒。这个教训很明显:优先使用基本类型而不是装箱的基本类型,也要注意无意识的自动装箱。
这个条目不应该被误解为暗示对象创建是昂贵的,应该避免创建对象。 相反,使用构造方法创建和回收小的对象是非常廉价,构造方法只会做很少的显示工作,,尤其是在现代JVM实现上。 创建额外的对象以增强程序的清晰度,简单性或功能性通常是件好事。
相反,除非池中的对象非常重量级,否则通过维护自己的对象池来避免对象创建是一个坏主意。对象池的典型例子就是数据库连接。建立连接的成本非常高,因此重用这些对象是有意义的。但是,一般来说,维护自己的对象池会使代码混乱,增加内存占用,并损害性能。现代JVM实现具有高度优化的垃圾收集器,它们在轻量级对象上轻松胜过此类对象池。
这个条目的对应点是针对条目 50的防御性复制(defensive copying)。 目前的条目说:“当你应该重用一个现有的对象时,不要创建一个新的对象”,而条目 50说:“不要重复使用现有的对象,当你应该创建一个新的对象时。”请注意,重用防御性复制所要求的对象所付出的代价,要远远大于不必要地创建重复的对象。 未能在需要的情况下防御性复制会导致潜在的错误和安全漏洞;而不必要地创建对象只会影响程序的风格和性能。
7. 消除过期的对象引用
如果你从使用手动内存管理的语言(如C或c++)切换到像Java这样的带有垃圾收集机制的语言,那么作为程序员的工作就会变得容易多了,因为你的对象在使用完毕以后就自动回收了。当你第一次体验它的时候,它就像魔法一样。这很容易让人觉得你不需要考虑内存管理,但这并不完全正确。
考虑以下简单的堆栈实现:
// Can you spot the "memory leak"?
public class Stack {
private Object[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;
public Stack() {
elements = new Object[DEFAULT_INITIAL_CAPACITY];
}
public void push(Object e) {
ensureCapacity();
elements[size++] = e;
}
public Object pop() {
if (size == 0)
throw new EmptyStackException();
return elements[--size];
}
/**
* Ensure space for at least one more element, roughly
* doubling the capacity each time the array needs to grow.
*/
private void ensureCapacity() {
if (elements.length == size)
elements = Arrays.copyOf(elements, 2 * size + 1);
}
}
这个程序没有什么明显的错误(但是对于泛型版本,请参阅条目 29)。 你可以对它进行详尽的测试,它都会成功地通过每一项测试,但有一个潜在的问题。 笼统地说,程序有一个“内存泄漏”,由于垃圾回收器的活动的增加,或内存占用的增加,静默地表现为性能下降。 在极端的情况下,这样的内存泄漏可能会导致磁盘分页( disk paging),甚至导致内存溢出(OutOfMemoryError)的失败,但是这样的故障相对较少。
那么哪里发生了内存泄漏? 如果一个栈增长后收缩,那么从栈弹出的对象不会被垃圾收集,即使使用栈的程序不再引用这些对象。 这是因为栈维护对这些对象的过期引用( obsolete references)。 过期引用简单来说就是永远不会解除的引用。 在这种情况下,元素数组“活动部分(active portion)”之外的任何引用都是过期的。 活动部分是由索引下标小于size的元素组成。
垃圾收集语言中的内存泄漏(更适当地称为无意的对象保留 unintentional object retentions)是隐蔽的。 如果无意中保留了对象引用,那么不仅这个对象排除在垃圾回收之外,而且该对象引用的任何对象也是如此。 即使只有少数对象引用被无意地保留下来,也可以阻止垃圾回收机制对许多对象的回收,这对性能产生很大的影响。
这类问题的解决方法很简单:一旦对象引用过期,将它们设置为 null。 在我们的Stack类的情景下,只要从栈中弹出,元素的引用就设置为过期。 pop方法的修正版本如下所示:
public Object pop() {
if (size == 0)
throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;
}
取消过期引用的另一个好处是,如果它们随后被错误地引用,程序立即抛出NullPointerException异常,而不是悄悄地做继续做错误的事情。尽可能快地发现程序中的错误是有好处的。
当程序员第一次被这个问题困扰时,他们可能会在程序结束后立即清空所有对象引用。这既不是必要的,也不是可取的;它不必要地搞乱了程序。清空对象引用应该是例外而不是规范。消除过期引用的最好方法是让包含引用的变量超出范围。如果在最近的作用域范围内定义每个变量(条目 57),这种自然就会出现这种情况。
那么什么时候应该清空一个引用呢?Stack类的哪个方面使它容易受到内存泄漏的影响?简单地说,它管理自己的内存。存储池(storage pool)由elements数组的元素组成(对象引用单元,而不是对象本身)。数组中活动部分的元素(如前面定义的)被分配,其余的元素都是空闲的。垃圾收集器没有办法知道这些;对于垃圾收集器来说,elements数组中的所有对象引用都同样有效。只有程序员知道数组的非活动部分不重要。程序员可以向垃圾收集器传达这样一个事实,一旦数组中的元素变成非活动的一部分,就可以手动清空这些元素的引用。
一般来说,当一个类自己管理内存时,程序员应该警惕内存泄漏问题。 每当一个元素被释放时,元素中包含的任何对象引用都应该被清除。
另一个常见的内存泄漏来源是缓存。一旦将对象引用放入缓存中,很容易忘记它的存在,并且在它变得无关紧要之后,仍然保留在缓存中。对于这个问题有几种解决方案。如果你正好想实现了一个缓存:只要在缓存之外存在对某个项(entry)的键(key)引用,那么这项就是明确有关联的,就可以用WeakHashMap来表示缓存;这些项在过期之后自动删除。记住,只有当缓存中某个项的生命周期是由外部引用到键(key)而不是值(value)决定时,WeakHashMap才有用。
更常见的情况是,缓存项有用的生命周期不太明确,随着时间的推移一些项变得越来越没有价值。在这种情况下,缓存应该偶尔清理掉已经废弃的项。这可以通过一个后台线程(也许是ScheduledThreadPoolExecutor)或将新的项添加到缓存时顺便清理。LinkedHashMap类使用它的removeEldestEntry方法实现了后一种方案。对于更复杂的缓存,可能直接需要使用java.lang.ref。
第三个常见的内存泄漏来源是监听器和其他回调。如果你实现了一个API,其客户端注册回调,但是没有显式地撤销注册回调,除非采取一些操作,否则它们将会累积。确保回调是垃圾收集的一种方法是只存储弱引用(weak references),例如,仅将它们保存在WeakHashMap的键(key)中。
因为内存泄漏通常不会表现为明显的故障,所以它们可能会在系统中保持多年。 通常仅在仔细的代码检查或借助堆分析器( heap profiler)的调试工具才会被发现。 因此,学习如何预见这些问题,并防止这些问题发生,是非常值得的
8. 避免使用Finalizer和Cleaner机制
Finalizer机制是不可预知的,往往是危险的,而且通常是不必要的。 它们的使用会导致不稳定的行为,糟糕的性能和移植性问题。 Finalizer机制有一些特殊的用途,我们稍后会在这个条目中介绍,但是通常应该避免它们。 从Java 9开始,Finalizer机制已被弃用,但仍被Java类库所使用。 Java 9中 Cleaner机制代替了Finalizer机制。 Cleaner机制不如Finalizer机制那样危险,但仍然是不可预测,运行缓慢并且通常是不必要的。
提醒C++程序员不要把Java中的Finalizer或Cleaner机制当成的C ++析构函数的等价物。 在C++中,析构函数是回收对象相关资源的正常方式,是与构造方法相对应的。 在Java中,当一个对象变得不可达时,垃圾收集器回收与对象相关联的存储空间,不需要开发人员做额外的工作。 C ++析构函数也被用来回收其他非内存资源。 在Java中,try-with-resources或try-finally块用于此目的(条目 9)。
Finalizer和Cleaner机制的一个缺点是不能保证他们能够及时执行[JLS,12.6]。 在一个对象变得无法访问时,到Finalizer和Cleaner机制开始运行时,这期间的时间是任意长的。 这意味着你永远不应该Finalizer和Cleaner机制做任何时间敏感(time-critical)的事情。 例如,依赖于Finalizer和Cleaner机制来关闭文件是严重的错误,因为打开的文件描述符是有限的资源。 如果由于系统迟迟没有运行Finalizer和Cleaner机制而导致许多文件被打开,程序可能会失败,因为它不能再打开文件了。
及时执行Finalizer和 Cleaner机制是垃圾收集算法的一个功能,这种算法在不同的实现中有很大的不同。程序的行为依赖于Finalizer和 Cleaner机制的及时执行,其行为也可能大不不同。 这样的程序完全可以在你测试的JVM上完美运行,然而在你最重要的客户的机器上可能运行就会失败。
延迟终结(finalization)不只是一个理论问题。为一个类提供一个Finalizer机制可以任意拖延它的实例的回收。一位同事调试了一个长时间运行的GUI应用程序,这个应用程序正在被一个OutOfMemoryError错误神秘地死掉。分析显示,在它死亡的时候,应用程序的Finalizer机制队列上有成千上万的图形对象正在等待被终结和回收。不幸的是,Finalizer机制线程的运行优先级低于其他应用程序线程,所以对象被回收的速度低于进入队列的速度。语言规范并不保证哪个线程执行Finalizer机制,因此除了避免使用Finalizer机制之外,没有轻便的方法来防止这类问题。在这方面, Cleaner机制比Finalizer机制要好一些,因为Java类的创建者可以控制自己cleaner机制的线程,但cleaner机制仍然在后台运行,在垃圾回收器的控制下运行,但不能保证及时清理。
Java规范不能保证Finalizer和Cleaner机制能及时运行;它甚至不能能保证它们是否会运行。当一个程序结束后,一些不可达对象上的Finalizer和Cleaner机制仍然没有运行。因此,不应该依赖于Finalizer和Cleaner机制来更新持久化状态。例如,依赖于Finalizer和Cleaner机制来释放对共享资源(如数据库)的持久锁,这是一个使整个分布式系统陷入停滞的好方法。
不要相信System.gc和System.runFinalization方法。 他们可能会增加Finalizer和Cleaner机制被执行的几率,但不能保证一定会执行。 曾经声称做出这种保证的两个方法:System.runFinalizersOnExit和它的孪生兄弟Runtime.runFinalizersOnExit,包含致命的缺陷,并已被弃用了几十年[ThreadStop]。
Finalizer机制的另一个问题是在执行Finalizer机制过程中,未捕获的异常会被忽略,并且该对象的Finalizer机制也会终止 [JLS, 12.6]。未捕获的异常会使其他对象陷入一种损坏的状态(corrupt state)。如果另一个线程试图使用这样一个损坏的对象,可能会导致任意不确定的行为。通常情况下,未捕获的异常将终止线程并打印堆栈跟踪( stacktrace),但如果发生在Finalizer机制中,则不会发出警告。Cleaner机制没有这个问题,因为使用Cleaner机制的类库可以控制其线程。
使用finalizer和cleaner机制会导致严重的性能损失。 在我的机器上,创建一个简单的AutoCloseable对象,使用try-with-resources关闭它,并让垃圾回收器回收它的时间大约是12纳秒。 使用finalizer机制,而时间增加到550纳秒。 换句话说,使用finalizer机制创建和销毁对象的速度要慢50倍。 这主要是因为finalizer机制会阻碍有效的垃圾收集。 如果使用它们来清理类的所有实例(在我的机器上的每个实例大约是500纳秒),那么cleaner机制的速度与finalizer机制的速度相当,但是如果仅将它们用作安全网( safety net),则cleaner机制要快得多,如下所述。 在这种环境下,创建,清理和销毁一个对象在我的机器上需要大约66纳秒,这意味着如果你不使用安全网的话,需要支付5倍(而不是50倍)的保险。
finalizer机制有一个严重的安全问题:它们会打开你的类来进行finalizer机制攻击。finalizer机制攻击的想法很简单:如果一个异常是从构造方法或它的序列化中抛出的——readObject和readResolve方法(第12章)——恶意子类的finalizer机制可以运行在本应该“中途夭折(died on the vine)”的部分构造对象上。finalizer机制可以在静态字属性记录对对象的引用,防止其被垃圾收集。一旦记录了有缺陷的对象,就可以简单地调用该对象上的任意方法,而这些方法本来就不应该允许存在。从构造方法中抛出异常应该足以防止对象出现;而在finalizer机制存在下,则不是。这样的攻击会带来可怕的后果。Final类不受finalizer机制攻击的影响,因为没有人可以编写一个final类的恶意子类。为了保护非final类不受finalizer机制攻击,编写一个final的finalize方法,它什么都不做。
那么,你应该怎样做呢?为对象封装需要结束的资源(如文件或线程),而不是为该类编写Finalizer和Cleaner机制?让你的类实现AutoCloseable接口即可,并要求客户在在不再需要时调用每个实例close方法,通常使用try-with-resources确保终止,即使面对有异常抛出情况(条目 9)。一个值得一提的细节是实例必须跟踪是否已经关闭:close方法必须记录在对象里不再有效的属性,其他方法必须检查该属性,如果在对象关闭后调用它们,则抛出IllegalStateException异常。
那么,Finalizer和Cleaner机制有什么好处呢?它们可能有两个合法用途。一个是作为一个安全网(safety net),以防资源的拥有者忽略了它的close方法。虽然不能保证Finalizer和Cleaner机制会迅速运行(或者根本就没有运行),最好是把资源释放晚点出来,也要好过客户端没有这样做。如果你正在考虑编写这样的安全网Finalizer机制,请仔细考虑一下这样保护是否值得付出对应的代价。一些Java库类,如FileInputStream、FileOutputStream、ThreadPoolExecutor和java.sql.Connection,都有作为安全网的Finalizer机制。
第二种合理使用Cleaner机制的方法与本地对等类(native peers)有关。本地对等类是一个由普通对象委托的本地(非Java)对象。由于本地对等类不是普通的 Java对象,所以垃圾收集器并不知道它,当它的Java对等对象被回收时,本地对等类也不会回收。假设性能是可以接受的,并且本地对等类没有关键的资源,那么Finalizer和Cleaner机制可能是这项任务的合适的工具。但如果性能是不可接受的,或者本地对等类持有必须迅速回收的资源,那么类应该有一个close方法,正如前面所述。
Cleaner机制使用起来有点棘手。下面是演示该功能的一个简单的Room类。假设Room对象必须在被回收前清理干净。Room类实现AutoCloseable接口;它的自动清理安全网使用的是一个Cleaner机制,这仅仅是一个实现细节。与Finalizer机制不同,Cleaner机制不污染一个类的公共API:
// An autocloseable class using a cleaner as a safety net
public class Room implements AutoCloseable {
private static final Cleaner cleaner = Cleaner.create();
// Resource that requires cleaning. Must not refer to Room!
private static class State implements Runnable {
int numJunkPiles; // Number of junk piles in this room
State(int numJunkPiles) {
this.numJunkPiles = numJunkPiles;
}
// Invoked by close method or cleaner
@Override
public void run() {
System.out.println("Cleaning room");
numJunkPiles = 0;
}
}
// The state of this room, shared with our cleanable
private final State state;
// Our cleanable. Cleans the room when it’s eligible for gc
private final Cleaner.Cleanable cleanable;
public Room(int numJunkPiles) {
state = new State(numJunkPiles);
cleanable = cleaner.register(this, state);
}
@Override
public void close() {
cleanable.clean();
}
}
静态内部State类拥有Cleaner机制清理房间所需的资源。 在这里,它仅仅包含numJunkPiles属性,它代表混乱房间的数量。 更实际地说,它可能是一个final修饰的long类型的指向本地对等类的指针。 State类实现了Runnable接口,其run方法最多只能调用一次,只能被我们在Room构造方法中用Cleaner机制注册State实例时得到的Cleanable调用。 对run方法的调用通过以下两种方法触发:通常,通过调用Room的close方法内调用Cleanable的clean方法来触发。 如果在Room实例有资格进行垃圾回收的时候客户端没有调用close方法,那么Cleaner机制将(希望)调用State的run方法。
一个State实例不引用它的Room实例是非常重要的。如果它引用了,则创建了一个循环,阻止了Room实例成为垃圾收集的资格(以及自动清除)。因此,State必须是静态的嵌内部类,因为非静态内部类包含对其宿主类的实例的引用(条目 24)。同样,使用lambda表达式也是不明智的,因为它们很容易获取对宿主类对象的引用。
就像我们之前说的,Room的Cleaner机制仅仅被用作一个安全网。如果客户将所有Room的实例放在try-with-resource块中,则永远不需要自动清理。行为良好的客户端如下所示:
public class Adult {
public static void main(String[] args) {
try (Room myRoom = new Room(7)) {
System.out.println("Goodbye");
}
}
}
正如你所预料的,运行Adult程序会打印Goodbye字符串,随后打印Cleaning room字符串。但是如果时不合规矩的程序,它从来不清理它的房间会是什么样的?
public class Teenager {
public static void main(String[] args) {
new Room(99);
System.out.println("Peace out");
}
}
你可能期望它打印出Peace out,然后打印Cleaning room字符串,但在我的机器上,它从不打印Cleaning room字符串;仅仅是程序退出了。 这是我们之前谈到的不可预见性。 Cleaner机制的规范说:“System.exit方法期间的清理行为是特定于实现的。 不保证清理行为是否被调用。”虽然规范没有说明,但对于正常的程序退出也是如此。 在我的机器上,将System.gc()方法添加到Teenager类的main方法足以让程序退出之前打印Cleaning room,但不能保证在你的机器上会看到相同的行为。
总之,除了作为一个安全网或者终止非关键的本地资源,不要使用Cleaner机制,或者是在Java 9发布之前的finalizers机制。即使是这样,也要当心不确定性和性能影响。
9. 使用try-with-resources语句替代try-finally语句
Java类库中包含许多必须通过调用close方法手动关闭的资源。 比如InputStream,OutputStream和java.sql.Connection。 客户经常忽视关闭资源,其性能结果可想而知。 尽管这些资源中有很多使用finalizer机制作为安全网,但finalizer机制却不能很好地工作(条目 8)。
从以往来看,try-finally语句是保证资源正确关闭的最佳方式,即使是在程序抛出异常或返回的情况下:
// try-finally - No longer the best way to close resources!
static String firstLineOfFile(String path) throws IOException {
BufferedReader br = new BufferedReader(new FileReader(path));
try {
return br.readLine();
} finally {
br.close();
}
}
这可能看起来并不坏,但是当添加第二个资源时,情况会变得更糟:
// try-finally is ugly when used with more than one resource!
static void copy(String src, String dst) throws IOException {
InputStream in = new FileInputStream(src);
try {
OutputStream out = new FileOutputStream(dst);
try {
byte[] buf = new byte[BUFFER_SIZE];
int n;
while ((n = in.read(buf)) >= 0)
out.write(buf, 0, n);
} finally {
out.close();
}
} finally {
in.close();
}
}
这可能很难相信,但即使是优秀的程序员,大多数时候也会犯错误。首先,我在Java Puzzlers[Bloch05]的第88页上弄错了,多年来没有人注意到。事实上,2007年Java类库中使用close方法的三分之二都是错误的。
即使是用try-finally语句关闭资源的正确代码,如前面两个代码示例所示,也有一个微妙的缺陷。 try-with-resources块和finally块中的代码都可以抛出异常。 例如,在firstLineOfFile方法中,由于底层物理设备发生故障,对readLine方法的调用可能会引发异常,并且由于相同的原因,调用close方法可能会失败。 在这种情况下,第二个异常完全冲掉了第一个异常。 在异常堆栈跟踪中没有第一个异常的记录,这可能使实际系统中的调试非常复杂——通常这是你想要诊断问题的第一个异常。 虽然可以编写代码来抑制第二个异常,但是实际上没有人这样做,因为它太冗长了。
当Java 7引入了try-with-resources语句时,所有这些问题一下子都得到了解决[JLS,14.20.3]。要使用这个构造,资源必须实现 AutoCloseable接口,该接口由一个返回为void的close组成。Java类库和第三方类库中的许多类和接口现在都实现或继承了AutoCloseable接口。如果你编写的类表示必须关闭的资源,那么这个类也应该实现AutoCloseable接口。
以下是我们的第一个使用try-with-resources的示例:
// try-with-resources - the the best way to close resources!
static String firstLineOfFile(String path) throws IOException {
try (BufferedReader br = new BufferedReader(
new FileReader(path))) {
return br.readLine();
}
}
以下是我们的第二个使用try-with-resources的示例:
// try-with-resources on multiple resources - short and sweet
static void copy(String src, String dst) throws IOException {
try (InputStream in = new FileInputStream(src);
OutputStream out = new FileOutputStream(dst)) {
byte[] buf = new byte[BUFFER_SIZE];
int n;
while ((n = in.read(buf)) >= 0)
out.write(buf, 0, n);
}
}
不仅 try-with-resources版本比原始版本更精简,更好的可读性,而且它们提供了更好的诊断。 考虑firstLineOfFile方法。 如果调用readLine和(不可见)close方法都抛出异常,则后一个异常将被抑制(suppressed),而不是前者。 事实上,为了保留你真正想看到的异常,可能会抑制多个异常。 这些抑制的异常没有被抛弃, 而是打印在堆栈跟踪中,并标注为被抑制了。 你也可以使用getSuppressed方法以编程方式访问它们,该方法在Java 7中已添加到的Throwable中。
可以在 try-with-resources语句中添加catch子句,就像在常规的try-finally语句中一样。这允许你处理异常,而不会在另一层嵌套中污染代码。作为一个稍微有些做作的例子,这里有一个版本的firstLineOfFile方法,它不会抛出异常,但是如果它不能打开或读取文件,则返回默认值:
// try-with-resources with a catch clause
static String firstLineOfFile(String path, String defaultVal) {
try (BufferedReader br = new BufferedReader(
new FileReader(path))) {
return br.readLine();
} catch (IOException e) {
return defaultVal;
}
}
结论明确:在处理必须关闭的资源时,使用try-with-resources语句替代try-finally语句。 生成的代码更简洁,更清晰,并且生成的异常更有用。 try-with-resources语句在编写必须关闭资源的代码时会更容易,也不会出错,而使用try-finally语句实际上是不可能的。