Event Loop

155 阅读14分钟

进程与线程

涉及面试题:进程与线程区别?JS 单线程带来的好处?

相信大家经常会听到 JS 是单线程执行的,但是你是否疑惑过什么是线程?

讲到线程,那么肯定也得说一下进程。本质上来说,两个名词都是 CPU 工作时间片的一个描述。

进程描述了 CPU 在运行指令及加载和保存上下文所需的时间,放在应用上来说就代表了一个程序。线程是进程中的更小单位,描述了执行一段指令所需的时间。

把这些概念拿到浏览器中来说,当你打开一个 Tab 页时,其实就是创建了一个进程,一个进程中可以有多个线程,比如渲染线程、JS 引擎线程、HTTP 请求线程等等。当你发起一个请求时,其实就是创建了一个线程,当请求结束后,该线程可能就会被销毁。

上文说到了 JS 引擎线程和渲染线程,大家应该都知道,在 JS 运行的时候可能会阻止 UI 渲染,这说明了两个线程是互斥的。这其中的原因是因为 JS 可以修改 DOM,如果在 JS 执行的时候 UI 线程还在工作,就可能导致不能安全的渲染 UI。这其实也是一个单线程的好处,得益于 JS 是单线程运行的,可以达到节省内存,节约上下文切换时间,没有锁的问题的好处。当然前面两点在服务端中更容易体现,对于锁的问题,形象的来说就是当我读取一个数字 15 的时候,同时有两个操作对数字进行了加减,这时候结果就出现了错误。解决这个问题也不难,只需要在读取的时候加锁,直到读取完毕之前都不能进行写入操作。

执行栈

涉及面试题:什么是执行栈?

可以把执行栈认为是一个存储函数调用的栈结构,遵循先进后出的原则。

当开始执行 JS 代码时,首先会执行一个 main 函数,然后执行我们的代码。根据先进后出的原则,后执行的函数会先弹出栈,在图中我们也可以发现,foo函数后执行,当执行完毕后就从栈中弹出了。

平时在开发中,大家也可以在报错中找到执行栈的痕迹

当我们使用递归的时候,因为栈可存放的函数是有限制的,一旦存放了过多的函数且没有得到释放的话,就会出现爆栈的问题

function bar() {
  bar()
}
bar()

一般来说封装组件可能会用到递归调用,比如 iview 的源码中tree的实现就用到了递归。注意点就是要有调用的层级限制。

浏览器中的 Event Loop

涉及面试题:异步代码执行顺序?解释一下什么是 Event Loop ?

上一小节我们讲到了什么是执行栈,大家也知道了当我们执行 JS 代码的时候其实就是往执行栈中放入函数,那么遇到异步代码的时候该怎么办?其实当遇到异步的代码时,会被挂起并在需要执行的时候加入到 Task(有多种 Task) 队列中。一旦执行栈为空,Event Loop 就会从 Task 队列中拿出需要执行的代码并放入执行栈中执行,所以本质上来说 JS 中的异步还是同步行为。

不同的任务源会被分配到不同的 Task 队列中,任务源可以分为 微任务(microtask)宏任务(macrotask)。在 ES6 规范中,microtask 称为 jobsmacrotask 称为 task。下面来看以下代码的执行顺序:

console.log('script start')

async function async1() {
  await async2()
  console.log('async1 end')
}
async function async2() {
  console.log('async2 end')
}
async1()

setTimeout(function() {
  console.log('setTimeout')
}, 0)

new Promise(resolve => {
  console.log('Promise')
  resolve()
})
  .then(function() {
    console.log('promise1')
  })
  .then(function() {
    console.log('promise2')
  })

console.log('script end')
// script start => async2 end => Promise => script end => promise1 => promise2 => async1 end => setTimeout

// script start -> async2 end -> Promise -> script end -> async1 end -> promise1 -> promise2 -> setTimeout

注意:新的浏览器中不是如上打印的,因为 await 变快了,具体内容可以往下看

首先先来解释下上述代码的 asyncawait 的执行顺序。当我们调用 async1 函数时,会马上输出 async2 end,并且函数返回一个 Promise,接下来在遇到 await的时候会就让出线程开始执行 async1 外的代码,所以我们完全可以把 await 看成是让出线程的标志。

然后当同步代码全部执行完毕以后,就会去执行所有的异步代码,那么又会回到 await 的位置执行返回的 Promiseresolve 函数,这又会把 resolve 丢到微任务队列中,接下来去执行 then 中的回调,当两个 then 中的回调全部执行完毕以后,又会回到 await 的位置处理返回值,这时候你可以看成是 Promise.resolve(返回值).then(),然后 await后的代码全部被包裹进了 then 的回调中,所以 console.log('async1 end')会优先执行于 setTimeout

如果你觉得上面这段解释还是有点绕,那么我把 async 的这两个函数改造成你一定能理解的代码

new Promise((resolve, reject) => {
  console.log('async2 end')
  // Promise.resolve() 将代码插入微任务队列尾部
  // resolve 再次插入微任务队列尾部
  resolve(Promise.resolve())
}).then(() => {
  console.log('async1 end')
})

也就是说,如果 await 后面跟着 Promise 的话,async1 end 需要等待三个 tick 才能执行到。那么其实这个性能相对来说还是略慢的,所以 V8 团队借鉴了 Node 8 中的一个 Bug,在引擎底层将三次 tick 减少到了二次 tick。

所以 Event Loop 执行顺序如下所示:

  • 首先执行同步代码,这属于宏任务
  • 当执行完所有同步代码后,执行栈为空,查询是否有异步代码需要执行
  • 执行所有微任务
  • 当执行完所有微任务后,如有必要会渲染页面
  • 然后开始下一轮 Event Loop,执行宏任务中的异步代码,也就是 setTimeout 中的回调函数

所以以上代码虽然 setTimeout 写在 Promise 之前,但是因为 Promise 属于微任务而 setTimeout 属于宏任务,所以会有以上的打印。

微任务包括 process.nextTickpromiseMutationObserver

宏任务包括 scriptsetTimeoutsetIntervalsetImmediateI/OUI rendering

这里很多人会有个误区,认为微任务快于宏任务,其实是错误的。因为宏任务中包括了 script ,浏览器会__先执行一个宏任务__,接下来有异步代码的话才会先执行微任务。

Node 中的 Event Loop

涉及面试题:Node 中的 Event Loop 和浏览器中的有什么区别?process.nexttick 执行顺序?

Node 中的 Event Loop 和浏览器中的是完全不相同的东西。

Node 的 Event Loop 分为 6 个阶段,它们会按照顺序反复运行。每当进入某一个阶段的时候,都会从对应的回调队列中取出函数去执行。当队列为空或者执行的回调函数数量到达系统设定的阈值,就会进入下一阶段。 下面的图表展示了事件循环操作顺序的简化概览。

注意:每个框被称为事件循环机制的一个阶段。

  1. 每个阶段都有一个 FIFO 队列来执行回调。虽然每个阶段都是特殊的,但通常情况下,当事件循环进入给定的阶段时,它将执行特定于该阶段的任何操作,然后执行该阶段队列中的回调,直到队列用尽或最大回调数已执行。当该队列已用尽或达到回调限制,事件循环将移动到下一阶段,等等。

  2. 由于这些操作中的任何一个都可能调度 更多的 操作和由内核排列在轮询阶段被处理的新事件, 且在处理轮询中的事件时,轮询事件可以排队。因此,长时间运行的回调可以允许轮询阶段运行长于计时器的阈值时间。

  3. 阶段概述

  • 定时器:本阶段执行已经被 setTimeout()setInterval() 的调度回调函数。
  • 待定回调:执行延迟到下一个循环迭代的 I/O 回调。
  • idle, prepare:仅系统内部使用。
  • 轮询:检索新的 I/O 事件;执行与 I/O 相关的回调(几乎所有情况下,除了关闭的回调函数,那些由计时器和 setImmediate() 调度的之外),其余情况 node 将在适当的时候在此阻塞。
  • 检测setImmediate() 回调函数在这里执行。
  • 关闭的回调函数:一些关闭的回调函数,如:socket.on('close', ...)。 在每次运行的事件循环之间,Node.js 检查它是否在等待任何异步 I/O 或计时器,如果没有的话,则完全关闭。

阶段的详细概述

  1. 定时器

计时器指定 可以执行所提供回调 的 阈值,而不是用户希望其执行的确切时间。在指定的一段时间间隔后, 计时器回调将被尽可能早地运行。但是,操作系统调度或其它正在运行的回调可能会延迟它们。

注意轮询 阶段 控制何时定时器执行。 例如,假设您调度了一个在 100 毫秒后超时的定时器,然后您的脚本开始异步读取会耗费 95 毫秒的文件:

const fs = require('fs');

function someAsyncOperation(callback) {
  // Assume this takes 95ms to complete
  fs.readFile('/path/to/file', callback);
}

const timeoutScheduled = Date.now();

setTimeout(() => {
  const delay = Date.now() - timeoutScheduled;

  console.log(`${delay}ms have passed since I was scheduled`);
}, 100);

// do someAsyncOperation which takes 95 ms to complete
someAsyncOperation(() => {
  const startCallback = Date.now();

  // do something that will take 10ms...
  while (Date.now() - startCallback < 10) {
    // do nothing
  }
});

当事件循环进入 轮询 阶段时,它有一个空队列(此时 fs.readFile() 尚未完成),因此它将等待剩下的毫秒数,直到达到最快的一个计时器阈值为止。当它等待 95 毫秒过后时,fs.readFile() 完成读取文件,它的那个需要 10 毫秒才能完成的回调,将被添加到 轮询 队列中并执行。当回调完成时,队列中不再有回调,因此事件循环机制将查看最快到达阈值的计时器,然后将回到 计时器 阶段,以执行定时器的回调。在本示例中,您将看到调度计时器到它的回调被执行之间的总延迟将为 105 毫秒。

注意:为了防止 轮询 阶段饿死事件循环,libuv(实现 Node.js 事件循环和平台的所有异步行为的 C 函数库),在停止轮询以获得更多事件之前,还有一个硬性最大值(依赖于系统)。

挂起的回调函数

此阶段对某些系统操作(如 TCP 错误类型)执行回调。例如,如果 TCP 套接字在尝试连接时接收到 ECONNREFUSED,则某些 *nix 的系统希望等待报告错误。这将被排队以在 挂起的回调 阶段执行。

轮询

轮询 阶段有两个重要的功能:

  1. 计算应该阻塞和轮询 I/O 的时间。
  2. 然后,处理 轮询 队列里的事件。 当事件循环进入 轮询 阶段且 没有被调度的计时器时 ,将发生以下两种情况之一:
  • 如果 轮询 队列 不是空的 ,事件循环将循环访问回调队列并同步执行它们,直到队列已用尽,或者达到了与系统相关的硬性限制。

  • 如果 轮询 队列 是空的 ,还有两件事发生:

    • 如果脚本被 setImmediate() 调度,则事件循环将结束 轮询 阶段,并继续 检查 阶段以执行那些被调度的脚本。

    • 如果脚本 未被 setImmediate()调度,则事件循环将等待回调被添加到队列中,然后立即执行。

一旦 轮询 队列为空,事件循环将检查 已达到时间阈值的计时器。如果一个或多个计时器已准备就绪,则事件循环将绕回计时器阶段以执行这些计时器的回调。

检查阶段

此阶段允许人员在轮询阶段完成后立即执行回调。如果轮询阶段变为空闲状态,并且脚本使用 setImmediate() 后被排列在队列中,则事件循环可能继续到 检查 阶段而不是等待。

setImmediate() 实际上是一个在事件循环的单独阶段运行的特殊计时器。它使用一个 libuv API 来安排回调在 轮询 阶段完成后执行。

通常,在执行代码时,事件循环最终会命中轮询阶段,在那等待传入连接、请求等。但是,如果回调已使用 setImmediate()调度过,并且轮询阶段变为空闲状态,则它将结束此阶段,并继续到检查阶段而不是继续等待轮询事件。

在以上的内容中,我们了解了 Node 中的 Event Loop 的执行顺序,接下来我们将会通过代码的方式来深入理解这块内容。

setImmediate() 对比 setTimeout()

setImmediate()setTimeout() 很类似,但是基于被调用的时机,他们也有不同表现。

  • setImmediate() 设计为一旦在当前 轮询 阶段完成, 就执行脚本。
  • setTimeout() 在最小阈值(ms 单位)过后运行脚本。 执行计时器的顺序将根据调用它们的上下文而异。如果二者都从主模块内调用,则计时器将受进程性能的约束(这可能会受到计算机上其他正在运行应用程序的影响)

首先在有些情况下,定时器的执行顺序其实是随机的, 例如,如果运行以下不在 I/O 周期(即主模块)内的脚本,则执行两个计时器的顺序是非确定性的,因为它受进程性能的约束:

setTimeout(() => {
    console.log('setTimeout')
}, 0)
setImmediate(() => {
    console.log('setImmediate')
})

对于以上代码来说,setTimeout 可能执行在前,也可能执行在后

  • 首先 setTimeout(fn, 0) === setTimeout(fn, 1),这是由源码决定的
  • 进入事件循环也是需要成本的,如果在准备时候花费了大于 1ms 的时间,那么在 timer 阶段就会直接执行 setTimeout 回调
  • 那么如果准备时间花费小于 1ms,那么就是 setImmediate 回调先执行了

当然在某些情况下(把这两个函数放入一个 I/O 循环内调用,setImmediate 总是被优先调用),他们的执行顺序一定是固定的,比如以下代码:

const fs = require('fs')

fs.readFile(__filename, () => {
    setTimeout(() => {
        console.log('timeout');
    }, 0)
    setImmediate(() => {
        console.log('immediate')
    })
})

使用 setImmediate() 相对于setTimeout()的主要优势是,如果setImmediate()是在 I/O 周期内被调度的,那它将会在其中任何的定时器之前执行,跟这里存在多少个定时器无关

在上述代码中,setImmediate 永远先执行。因为两个代码写在 IO 回调中,IO 回调是在 poll 阶段执行,当回调执行完毕后队列为空,发现存在 setImmediate回调,所以就直接跳转到 check 阶段去执行回调了。

上面介绍的都是 macrotask 的执行情况,对于 microtask 来说,它会在以上每个阶段完成前__清空__ microtask 队列

setTimeout(() => {
  console.log('timer21')
}, 0)

Promise.resolve().then(function() {
  console.log('promise1')
})

对于以上代码来说,其实和浏览器中的输出是一样的,microtask 永远执行在macrotask前面。

最后我们来讲讲 Node 中的 process.nextTick,这个函数其实是独立于 Event Loop 之外的,它有一个自己的队列,当每个阶段完成后,如果存在 nextTick 队列,就会__清空队列中的所有回调函数__,并且优先于其他 microtask 执行。

setTimeout(() => {
 console.log('timer1')

 Promise.resolve().then(function() {
   console.log('promise1')
 })
}, 0)

process.nextTick(() => {
 console.log('nextTick')
 process.nextTick(() => {
   console.log('nextTick')
   process.nextTick(() => {
     console.log('nextTick')
     process.nextTick(() => {
       console.log('nextTick')
     })
   })
 })
})

对于以上代码,大家可以发现无论如何,永远都是先把 nextTick 全部打印出来。