1.最小生成树
连通图的⽣生成树定义:
所谓⼀个连通图的⽣成树是一个极小的连通子图,它含有图中全部的n个顶点,但只足以
构成一颗树的n-1条边.
定义解读:
满⾜以下3个条件则为连通图的生成树:
1.图是连通图;
2.图中包含了了N个顶点;
3.图中边的数量量等于N-1条边.
最小⽣成树: 把构成连通网的最⼩代价的生成树称为最⼩⽣成树。
2.普里姆算法(Prim算法)
算法思路:
- 定义2个数组; adjvex ⽤来保存相关顶点下标; lowcost 保存顶点之间的权值
- 初始化2个数组, 从v0开始寻找最⼩生成树, 默认v0是最⼩生成树上第一个顶点
- 循环lowcost 数组,根据权值,找到顶点 k;
- 更新lowcost 数组
- 循环所有顶点,找到与顶点k 有关系的顶点. 并更更新lowcost 数组与adjvex 数组;
注意: 更新lowcost 数组与adjvex 数组的条件:
- 与顶点k 之间有连接
- 当前结点 j 没有加⼊过最⼩生成树;
- 顶点 k 与 当前顶点 j 之间的权值 ⼩于 顶点j 与其他顶点 k 之前的权值. 则更更新. 简单说就是要⽐较之前存储的值要小,则更更新;

计算过程如下:
- 先将第一个顶点V0加入到最小生成树,lowcost[0]=0, 0表示已经该顶点加入到生成树中。将v0顶点与之有边的权值存入数组lowcast。将arjvex 数组中与V0有边的的下标的值置为0.将arjvex[1]=0,将arjvex[5]=0



3.继续查找lowcost中权值最小的,找到11,对应下标为5,lowcast[5]=0。新增权值lowcast[4]=26. arjvex中新增arjvex[4]=5;


代码实现:
/* Prim算法生成最小生成树 */
void MiniSpanTree_Prim(MGraph G)
{
int min, i, j, k;
int sum = 0;
/* 保存相关顶点下标 */
int adjvex[MAXVEX];
/* 保存相关顶点间边的权值 */
int lowcost[MAXVEX];
/* 初始化第一个权值为0,即v0加入生成树 */
/* lowcost的值为0,在这里就是此下标的顶点已经加入生成树 */
lowcost[0] = 0;
/* 初始化第一个顶点下标为0 */
adjvex[0] = 0;
//1. 初始化
for(i = 1; i < G.numVertexes; i++) /* 循环除下标为0外的全部顶点 */
{
lowcost[i] = G.arc[0][i]; /* 将v0顶点与之有边的权值存入数组 */
adjvex[i] = 0; /* 初始化都为v0的下标 */
}
//2. 循环除了下标为0以外的全部顶点, 找到lowcost数组中最小的顶点k
for(i = 1; i < G.numVertexes; i++)
{
/* 初始化最小权值为∞, */
/* 通常设置为不可能的大数字如32767、65535等 */
min = INFINITYC;
j = 1;k = 0;
while(j < G.numVertexes) /* 循环全部顶点 */
{
/* 如果权值不为0且权值小于min */
if(lowcost[j]!=0 && lowcost[j] < min)
{
/* 则让当前权值成为最小值,更新min */
min = lowcost[j];
/* 将当前最小值的下标存入k */
k = j;
}
j++;
}
/* 打印当前顶点边中权值最小的边 */
printf("(V%d, V%d)=%d\n", adjvex[k], k ,G.arc[adjvex[k]][k]);
sum+=G.arc[adjvex[k]][k];
/* 3.将当前顶点的权值设置为0,表示此顶点已经完成任务 */
lowcost[k] = 0;
/* 循环所有顶点,找到与顶点k 相连接的顶点
1. 与顶点k 之间连接;
2. 该结点没有被加入到生成树;
3. 顶点k 与 顶点j 之间的权值 < 顶点j 与其他顶点的权值,则更新lowcost 数组;
*/
for(j = 1; j < G.numVertexes; j++)
{
/* 如果下标为k顶点各边权值小于此前这些顶点未被加入生成树权值 */
if(lowcost[j]!=0 && G.arc[k][j] < lowcost[j])
{
/* 将较小的权值存入lowcost相应位置 */
lowcost[j] = G.arc[k][j];
/* 将下标为k的顶点存入adjvex */
adjvex[j] = k;
}
}
}
printf("sum = %d\n",sum);
}
普里姆算法的运行效率只与连通网中包含的顶点数相关,而和网所含的边数无关。所以普里姆算法适合于解决边稠密的网,该算法运行的时间复杂度为:O(n2)。
3.普里姆算法(Prim算法)
克鲁斯卡尔算法,从边的角度求网的最小生成树,时间复杂度为O(eloge)。和普里姆算法恰恰相反,更适合于求边稀疏的网的最小生成树。
对于任意一个连通网的最小生成树来说,在要求总的权值最小的情况下,最直接的想法就是将连通网中的所有边按照权值大小进行升序排序,从小到大依次选择。
由于最小生成树本身是一棵生成树,所以需要时刻满足以下两点:
1、生成树中任意顶点之间有且仅有一条通路,也就是说,生成树中不能存在回路;
2.对于具有 n 个顶点的连通网,其生成树中只能有 n-1 条边,这 n-1 条边连通着 n 个顶点。
连接 n 个顶点在不产生回路的情况下,只需要 n-1 条边。
所以克鲁斯卡尔算法的具体思路是:
- 将邻接矩阵 转化成 边表数组;
- 对边表数组根据权值按照从⼩小到⼤大的顺序排序;
- 遍历所有的边, 通过parent 数组找到边的连接信息; 避免闭环问题;
- 如果不不存在闭环问题,则加⼊入到最⼩小⽣生成树中. 并且修改parent 数组
代码实现:
/* 交换权值以及头和尾 */
void Swapn(Edge *edges,int i, int j)
{
int tempValue;
//交换edges[i].begin 和 edges[j].begin 的值
tempValue = edges[i].begin;
edges[i].begin = edges[j].begin;
edges[j].begin = tempValue;
//交换edges[i].end 和 edges[j].end 的值
tempValue = edges[i].end;
edges[i].end = edges[j].end;
edges[j].end = tempValue;
//交换edges[i].weight 和 edges[j].weight 的值
tempValue = edges[i].weight;
edges[i].weight = edges[j].weight;
edges[j].weight = tempValue;
}
/* 对权值进行排序 */
void sort(Edge edges[],MGraph *G)
{
//对权值进行排序(从小到大)
int i, j;
for ( i = 0; i < G->numEdges; i++)
{
for ( j = i + 1; j < G->numEdges; j++)
{
if (edges[i].weight > edges[j].weight)
{
Swapn(edges, i, j);
}
}
}
printf("边集数组根据权值排序之后的为:\n");
for (i = 0; i < G->numEdges; i++)
{
printf("(%d, %d) %d\n", edges[i].begin, edges[i].end, edges[i].weight);
}
}
/* 查找连线顶点的尾部下标 */
//根据顶点f以及parent 数组,可以找到当前顶点的尾部下标; 帮助我们判断2点之间是否存在闭环问题;
int Find(int *parent, int f)
{
while ( parent[f] > 0)
{
f = parent[f];
}
return f;
}
/* 生成最小生成树 */
void MiniSpanTree_Kruskal(MGraph G)
{
int i, j, n, m;
int sum = 0;
int k = 0;
/* 定义一数组用来判断边与边是否形成环路
用来记录顶点间的连接关系. 通过它来防止最小生成树产生闭环;*/
int parent[MAXVEX];
/* 定义边集数组,edge的结构为begin,end,weight,均为整型 */
Edge edges[MAXEDGE];
/*1. 用来构建边集数组*/
for ( i = 0; i < G.numVertexes-1; i++)
{
for (j = i + 1; j < G.numVertexes; j++)
{
//如果当前路径权值 != ∞
if (G.arc[i][j]<INFINITYC)
{
//将路径对应的begin,end,weight 存储到edges 边集数组中.
edges[k].begin = i;
edges[k].end = j;
edges[k].weight = G.arc[i][j];
//边集数组计算器k++;
k++;
}
}
}
//2. 对边集数组排序
sort(edges, &G);
//3.初始化parent 数组为0. 9个顶点;
// for (i = 0; i < G.numVertexes; i++)
for (i = 0; i < MAXVEX; i++)
parent[i] = 0;
//4. 计算最小生成树
printf("打印最小生成树:\n");
/* 循环每一条边 G.numEdges 有15条边*/
for (i = 0; i < G.numEdges; i++)
{
//获取begin,end 在parent 数组中的信息;
//如果n = m ,将begin 和 end 连接,就会产生闭合的环.
n = Find(parent,edges[i].begin);
m = Find(parent,edges[i].end);
//printf("n = %d,m = %d\n",n,m);
/* 假如n与m不等,说明此边没有与现有的生成树形成环路 */
if (n != m)
{
/* 将此边的结尾顶点放入下标为起点的parent中。 */
/* 表示此顶点已经在生成树集合中 */
parent[n] = m;
/*打印最小生成树路径*/
printf("(%d, %d) %d\n", edges[i].begin, edges[i].end, edges[i].weight);
sum += edges[i].weight;
}
}
printf("sum = %d\n",sum);
}