从零开始的Java容器学习(五):HashMap

175 阅读14分钟

前言

HashMap在面试中经常会问到,包括它的底层实现,与其他容器的比较以及1.8前后实现的比较。

HashMap的简要介绍

JDK1.8中,HashMap的实现方式是数组+链表/红黑树,存储的是无序键值对映射,非线程安全。

HashMap采用数组来存储key、value构成的Entry对象,无容量限制,其默认初始数组大小为16,负载因子为0.75,hash冲突时采用链表解决冲突,若链表长度超过8则将其转为红黑树,红黑树中节点少于6时转为链表。(不过源码中也提到了在负载因子等于0.75的情况下,链表长度超过8的可能性极低),如果存放的key是自定义类,则需要重写hashcode和equal方法。

由图可得出其继承关系分别是继承自AbstractMap,实现了Cloneable、Map、Serializable接口。

从源码分析HashMap

成员变量

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;//初始默认底层数组大小为16
static final float DEFAULT_LOAD_FACTOR = 0.75f;//默认装载因子为0.75
static final int TREEIFY_THRESHOLD = 8;//树化阈值
static final int UNTREEIFY_THRESHOLD = 6;//链表化阈值
static final int MIN_TREEIFY_CAPACITY = 64;//数组大于这个值才会发生链表转红黑树
transient Node<K,V>[] table;//HashMap的底层实际就是这个数组,大小要求是2的幂次方
transient int size;//容器内键值对映射的数量
//以下是实际存储节点的类
//链表节点
static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;
    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
    public final K getKey()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }
    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }
    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }
    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key, e.getKey()) &&
                Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}
//红黑树节点
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
    TreeNode<K,V> parent;  // red-black tree links
    TreeNode<K,V> left;
    TreeNode<K,V> right;
    TreeNode<K,V> prev;    // needed to unlink next upon deletion
    boolean red;
    TreeNode(int hash, K key, V val, Node<K,V> next) {
        super(hash, key, val, next);
    }
    /**
     * Returns root of tree containing this node.
     */
    final TreeNode<K,V> root() {
        for (TreeNode<K,V> r = this, p;;) {
            if ((p = r.parent) == null)
                return r;
            r = p;
        }
    }

构造方法

//HashMap的构造方法有4种,着重看这个
public HashMap(int initialCapacity, float loadFactor) {//传入初始大小和装载因子
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)//超过最大值就用2的30次方
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);//将初始容量设置为满足传入的容量的2的幂次方
}

构造方法一共有4种,分别是:无参、传入初始容量、传入初始容量和装载因子、传入一个Map容器,然后还有以下的操作来保证HashMap的一些特性。

//前面构造函数有这个,通过一系列右移再 或 实现容量为2的整数次幂
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

以上一系列的0填充右移再或的操作能使容量为2的幂次方。

//HashMap的hash方法也是它的特性点之一
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
index = (n - 1) & hash;//下标计算的方法

一般我们提到hash方法,最先想到的应该是求模运算,均匀地分布到桶里,但是求模运算效率太低,HashMap进行了优化,HashMap 中则通过 h&(length-1)的方法来代替取模,同样实现了均匀的散列,但效率要高很多。

回想前面为什么对桶的要求一定要是2的整数次幂呢?原因就在这,首先,length为2的整数次幂的话, h&(length-1)就相当于对 length 取模, 这样便保证了散列的均匀, 同时也提升了效率;其次, length 为2的整数次幂的话,为偶数,这样 length-1 为奇数,奇数的最后一位是 1,这样便保证了 h&(length-1)的最后一位可能为0,也可能为 1 (这取决于 h 的值),即与后的结果可能为 偶数, 也可能为奇数, 这样便可以保证散列的均匀性, 而如果 length 为奇数的话, 很明显 length-1 为偶数, 它的最后一位是0,这样 h&(length-1)的最后一位肯定为0,即只能为偶 数, 这样任何 hash 值都只会被散列到数组的偶数下标位置上,这便浪费了近一半的空间, 因此,length 取2的整数次幂,是为了使不同 hash 值发生碰撞的概率较小,这样就能使元 素在哈希表中均匀地散列。

添加

public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;//table,node指针,length,node index这四个
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((p = tab[i = (n - 1) & hash]) == null)//找到的地方没有元素,直接存
        tab[i] = newNode(hash, key, value, null);
    else {//有的话
        Node<K,V> e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))//key相同的话
            e = p;//直接替换value
        else if (p instanceof TreeNode)//key不同,但是是红黑树节点
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);//直接加个树节点
        else {//否则它是个链表
            for (int binCount = 0; ; ++binCount) {//从表头开始遍历判断是否有这个节点
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);//没找到所以加一个新链表节点
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);//加入后要检查一下是否要树化
                    break;
                }
                if (e.hash == hash &&//这里说明找到了key,直接替换value
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;

删除

public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
        null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        //如果hash对应的index就是要找的key,然后就找到了这个元素
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) {//那它是红黑树节点或者链表节点
            if (p instanceof TreeNode)//红黑树节点
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                do {//用do while遍历链表找到链表节点
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
        //找到后,根据找到的位置进行红黑树删除节点或者链表删除或者桶里移除
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}

扩容

扩容函数,如果hash桶为空,初始化默认大小,否则双倍扩容。扩容是2的倍数,根据hash桶的计算方法,元素hashcode值不变,所以元素在新hash桶的下标,要么跟旧的一样,要么乘2。

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;//新容量实际是大于阈值的2的整数次幂(通过后面的操作实现的)
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {//这个桶里有元素
    //如果该位置没有形成链表, 则再次计算 index, 放入新 table
    //假设扩容前的 table 大小为 2 的 N 次方, 有上述 put 方法解析可知,
    //元素的 table 索引为其 hash 值的后 N 位确定
    //那么扩容后的 table 大小即为 2 的 N+1 次方, 则其中元素的 table 索引
    //为其 hash 值的后 N+1 位确定, 比原来多了一位
    //因此, table 中的元素只有两种情况:
    //元素 hash 值第 N+1 位为 0: 不需要进行位置调整
    //元素 hash 值第 N+1 位为 1: 调整至原索引的两倍位置
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)// 如果该位置形成了红黑树,则split
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                //这里是形成了链表,链表被调整成两个新链表
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 用于确定元素 hash 值第 N+1 位是否为 0:若为 0, 则使用 loHead 与 
                        //loTail, 将元素移至新 table 的原索引处;若不为 0, 则使用 hiHead 与 
                        //hiHead, 将元素移至新 table 的两倍索引处
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

更新和查询

public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }
public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}
public boolean containsValue(Object value) {
    Node<K,V>[] tab; V v;
    if ((tab = table) != null && size > 0) {
        for (int i = 0; i < tab.length; ++i) {
            for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                if ((v = e.value) == value ||
                    (value != null && value.equals(v)))
                    return true;
            }
        }
    }
    return false;
    }
//实际上查询都是通过这个getNode方法
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&//table不为空
        (first = tab[(n - 1) & hash]) != null) {//且table对应的index不为空
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))//说明在桶里直接找到了,然后返回就行
            return first;
        if ((e = first.next) != null) {//如果不是,说明要在链表或者红黑树里找
            if (first instanceof TreeNode)//检测到如果是一个红黑树节点,就从用getTreeNode找
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {//如果不是说明是链表,用链表来遍历寻找
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

遍历

遍历是先遍历table找到不为空的桶,如果桶内元素的next为空就继续遍历桶,不为空就遍历next(链表或红黑树)

public Set<K> keySet() {
    Set<K> ks = keySet;
    if (ks == null) {
        ks = new KeySet();
        keySet = ks;
    }
    return ks;
}
final class KeySet extends AbstractSet<K> {
    public final int size()                 { return size; }
    public final void clear()               { HashMap.this.clear(); }
    public final Iterator<K> iterator()     { return new KeyIterator(); }
    public final boolean contains(Object o) { return containsKey(o); }
    public final boolean remove(Object key) {
        return removeNode(hash(key), key, null, false, true) != null;
    }
    public final Spliterator<K> spliterator() {
        return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
    }
    public final void forEach(Consumer<? super K> action) {
        Node<K,V>[] tab;
        if (action == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next)
                    action.accept(e.key);
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }
}
abstract class HashIterator {
    Node<K,V> next;        // next entry to return
    Node<K,V> current;     // current entry
    int expectedModCount;  // for fast-fail
    int index;             // current slot
    HashIterator() {
        expectedModCount = modCount;
        Node<K,V>[] t = table;
        current = next = null;
        index = 0;
        if (t != null && size > 0) { // advance to first entry
            do {} while (index < t.length && (next = t[index++]) == null);
        }
    }
    public final boolean hasNext() {
        return next != null;
    }
    final Node<K,V> nextNode() {
        Node<K,V>[] t;
        Node<K,V> e = next;
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        if (e == null)
            throw new NoSuchElementException();
        if ((next = (current = e).next) == null && (t = table) != null) {
            do {} while (index < t.length && (next = t[index++]) == null);
        }
        return e;
    }
    public final void remove() {
        Node<K,V> p = current;
        if (p == null)
            throw new IllegalStateException();
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        current = null;
        K key = p.key;
        removeNode(hash(key), key, null, false, false);
        expectedModCount = modCount;
    }
}
final class KeyIterator extends HashIterator
    implements Iterator<K> {
    public final K next() { return nextNode().key; }
}

红黑树相关操作(可以跳过直接看总结)

链表转红黑树

final void treeifyBin(Node<K,V>[] tab, int hash) {
    int n, index; Node<K,V> e;
    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        resize();
    else if ((e = tab[index = (n - 1) & hash]) != null) {
        TreeNode<K,V> hd = null, tl = null;
        do {
            TreeNode<K,V> p = replacementTreeNode(e, null);
            if (tl == null)
                hd = p;
            else {
                p.prev = tl;
                tl.next = p;
            }
            tl = p;
        } while ((e = e.next) != null);
        if ((tab[index] = hd) != null)
            hd.treeify(tab);
    }
}

红黑树转链表

    final Node<K,V> untreeify(HashMap<K,V> map) {
        Node<K,V> hd = null, tl = null;
        for (Node<K,V> q = this; q != null; q = q.next) {
            Node<K,V> p = map.replacementNode(q, null);
            if (tl == null)
                hd = p;
            else
                tl.next = p;
            tl = p;
        }
        return hd;
    }

红黑树添加

final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                               int h, K k, V v) {
    Class<?> kc = null;
    boolean searched = false;
    TreeNode<K,V> root = (parent != null) ? root() : this;
    for (TreeNode<K,V> p = root;;) {
        int dir, ph; K pk;
        if ((ph = p.hash) > h)
            dir = -1;
        else if (ph < h)
            dir = 1;
        else if ((pk = p.key) == k || (k != null && k.equals(pk)))
            return p;
        else if ((kc == null &&
                  (kc = comparableClassFor(k)) == null) ||
                 (dir = compareComparables(kc, k, pk)) == 0) {
            if (!searched) {
                TreeNode<K,V> q, ch;
                searched = true;
                if (((ch = p.left) != null &&
                     (q = ch.find(h, k, kc)) != null) ||
                    ((ch = p.right) != null &&
                     (q = ch.find(h, k, kc)) != null))
                    return q;
            }
            dir = tieBreakOrder(k, pk);
        }

        TreeNode<K,V> xp = p;
        if ((p = (dir <= 0) ? p.left : p.right) == null) {
            Node<K,V> xpn = xp.next;
            TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
            if (dir <= 0)
                xp.left = x;
            else
                xp.right = x;
            xp.next = x;
            x.parent = x.prev = xp;
            if (xpn != null)
                ((TreeNode<K,V>)xpn).prev = x;
            moveRootToFront(tab, balanceInsertion(root, x));
            return null;
        }
    }
}

红黑树删除

final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
                          boolean movable) {
    int n;
    if (tab == null || (n = tab.length) == 0)
        return;
    int index = (n - 1) & hash;
    TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
    TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
    if (pred == null)
        tab[index] = first = succ;
    else
        pred.next = succ;
    if (succ != null)
        succ.prev = pred;
    if (first == null)
        return;
    if (root.parent != null)
        root = root.root();
    if (root == null
        || (movable
            && (root.right == null
                || (rl = root.left) == null
                || rl.left == null))) {
        tab[index] = first.untreeify(map);  // too small
        return;
    }
    TreeNode<K,V> p = this, pl = left, pr = right, replacement;
    if (pl != null && pr != null) {
        TreeNode<K,V> s = pr, sl;
        while ((sl = s.left) != null) // find successor
            s = sl;
        boolean c = s.red; s.red = p.red; p.red = c; // swap colors
        TreeNode<K,V> sr = s.right;
        TreeNode<K,V> pp = p.parent;
        if (s == pr) { // p was s's direct parent
            p.parent = s;
            s.right = p;
        }
        else {
            TreeNode<K,V> sp = s.parent;
            if ((p.parent = sp) != null) {
                if (s == sp.left)
                    sp.left = p;
                else
                    sp.right = p;
            }
            if ((s.right = pr) != null)
                pr.parent = s;
        }
        p.left = null;
        if ((p.right = sr) != null)
            sr.parent = p;
        if ((s.left = pl) != null)
            pl.parent = s;
        if ((s.parent = pp) == null)
            root = s;
        else if (p == pp.left)
            pp.left = s;
        else
            pp.right = s;
        if (sr != null)
            replacement = sr;
        else
            replacement = p;
    }
    else if (pl != null)
        replacement = pl;
    else if (pr != null)
        replacement = pr;
    else
        replacement = p;
    if (replacement != p) {
        TreeNode<K,V> pp = replacement.parent = p.parent;
        if (pp == null)
            root = replacement;
        else if (p == pp.left)
            pp.left = replacement;
        else
            pp.right = replacement;
        p.left = p.right = p.parent = null;
    }

    TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);

    if (replacement == p) {  // detach
        TreeNode<K,V> pp = p.parent;
        p.parent = null;
        if (pp != null) {
            if (p == pp.left)
                pp.left = null;
            else if (p == pp.right)
                pp.right = null;
        }
    }
    if (movable)
        moveRootToFront(tab, r);
}

红黑树查询

final TreeNode<K,V> getTreeNode(int h, Object k) {
    return ((parent != null) ? root() : this).find(h, k, null);
}
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
    TreeNode<K,V> p = this;
    do {
        int ph, dir; K pk;
        TreeNode<K,V> pl = p.left, pr = p.right, q;
        if ((ph = p.hash) > h)
            p = pl;
        else if (ph < h)
            p = pr;
        else if ((pk = p.key) == k || (k != null && k.equals(pk)))
            return p;
        else if (pl == null)
            p = pr;
        else if (pr == null)
            p = pl;
        else if ((kc != null ||
                  (kc = comparableClassFor(k)) != null) &&
                 (dir = compareComparables(kc, k, pk)) != 0)
            p = (dir < 0) ? pl : pr;
        else if ((q = pr.find(h, k, kc)) != null)
            return q;
        else
            p = pl;
    } while (p != null);
    return null;
}

总结

HashMap这一部分啰嗦了很多,但因为面试基本就问这玩意,所以多放点源码还是很有必要的。面试可能会问HashMap跟HashTable的区别,跟HashSet的区别,底层实现(JDL1.7JDK1.8中的区别)容量为什么要是2的整数次幂,hash计算的方法,还有多线程下的问题(其解决方法是用HashTable或者ConCurrentHashMap)。

以上是HashMap在面试中可能会被问到的角度,经过源码的学习想必已经能轻松回答出来了,最后再来总结一下HashMap,HashMap底层是数组+链表/红黑树实现,hash的计算方法是hashcode ^(异或)hashcode右移16位{高位异或低位},桶的下标是hash&(与)容量减一(n-1),{实际就是hash%n},但&比%更高效,然后就是HashMap的一系列操作,从构造,到添加删除更新查询,这些操作对红黑树节点和链表节点稍有差别,遍历的话,可通过keySet(),entrySet()等来遍历。

参考

hashmap冲突的解决方法以及原理分析

乔戈里面经-容器

JavaGuide面试突击版