关于机器学习的资料整理,看到好的就记下来。
RNN/LSTM/GRU
[1] 动手学深度学习第十二课:循环神经网络
[2]
Word2vec
[1] What is word2vec? - Programming with Text
[2] Understanding Word2Vec
[3] NLP-秒懂词向量Word2vec的本质
[4] 通俗理解word2vec
[5] word2vec 中的数学原理详解
[6] NLP之——Word2Vec详解
[7] 动手学深度学习第十六课:词向量(word2vec)
[8] Xin Rong. Word2vec Parameter Learning Explained. Arxiv, 2014.
Seq2Seq/Attention
[1] 动手学深度学习第十八课:seq2seq(编码器和解码器)和注意力机制
[2]
Self-organizing Map (SMO) 自组织映射神经网络
[1] SOM(自组织映射神经网络)——理论篇
[2] 自组织神经网络介绍:自组织特征映射SOM(Self-organizing feature Map),第一部分
[3] The Ultimate Guide to Self Organizing Maps (SOM's)
[4] 【机器学习笔记】自组织映射网络(SOM)
[5] Self-Organizing Maps Intuition Video
[6] Autoencoder Explained
Autoencoder/Variational Autoencoders (VEA) 变分自编码器
[1] 变分自编码器VAE:原来是这么一回事 | 附开源代码
[2] Autoencoder Explained
[3] 一文看懂AutoEncoder模型演进图谱
[4] Variational Autoencoders
[5] Variational Autoencoders - EXPLAINED!
[6] Introduction to autoencoders
[7] Variational autoencoders
[8] Understanding Variational Autoencoders (VAEs)
[9] Intuitively Understanding Variational Autoencoders
[10] Variational autoencoders
[11] Ali Ghodsi, Lec : Deep Learning, Variational Autoencoder, Oct 12 2017 [Lect 6.2]
[12] Tutorial - What is a variational autoencoder?
[13] 变分自编码器介绍、推导及实现
[14] 花式解释AutoEncoder与VAE
[15] 【学习笔记】生成模型——变分自编码器
[16] 变分自编码机 Arxiv Insights出品 双语字幕by皮艾诺小叔
[17] 如何使用变分自编码器VAE生成动漫人物形象
[18] VAE系解纠缠:从VAE到βVAE,再到β-TCVAE
[19] An introduction to Variational Autoencoders
[20] The Mathematics of Variational Auto-Encoders
[21] 变分自编码器(二):从贝叶斯观点出发
[22] 变分自编码器(一):原来是这么一回事
[23] Tutorial - What is a variational autoencoder?
[24]
Maximum Likelihood 极大似然估计
[1] StatQuest: Maximum Likelihood, clearly explained!!!
[2]Maximum Likelihood For the Normal Distribution, step-by-step!
[3] StatQuest: Probability vs Likelihood
[4] 从最大似然到EM算法:一致的理解方式
Naive Bayes 朴素贝叶斯
GBDT/XgBoost/LightGBM 梯度提升
[1] 梯度提升树公式详细推导
[2] 开源 | LightGBM:三天内收获GitHub 1000星
[3] LightGBM原理分析