底层结构
创建分类
#import "RLPerson.h"
NS_ASSUME_NONNULL_BEGIN
@interface RLPerson (Test) <NSCopying>
- (void)test;
+ (void)eat;
@property (nonatomic, assign) int age;
@end
NS_ASSUME_NONNULL_END
在命令中输入将Objective-C代码转为c++代码,.cpp结尾
$ xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc RLPeseron+Test.m
找到_category_t,这就分类的结构, 包含名称, 实例方法,对象方法,协议和属性
struct _category_t {
const char *name;
struct _class_t *cls;
const struct _method_list_t *instance_methods;
const struct _method_list_t *class_methods;
const struct _protocol_list_t *protocols;
const struct _prop_list_t *properties;
};
找到RLPerson+Test对应的结构体category_t
static struct _category_t _OBJC_$_CATEGORY_RLPerson_$_Test __attribute__ ((used, section ("__DATA,__objc_const"))) =
{
"RLPerson",
0, // &OBJC_CLASS_$_RLPerson,
(const struct _method_list_t *)&_OBJC_$_CATEGORY_INSTANCE_METHODS_RLPerson_$_Test,
(const struct _method_list_t *)&_OBJC_$_CATEGORY_CLASS_METHODS_RLPerson_$_Test,
0,
(const struct _prop_list_t *)&_OBJC_$_PROP_LIST_RLPerson_$_Test,
};
其中找到_CATEGORY_INSTANCE_METHODS_RLPerson_,可以找对象方法和类方法的实现了
static struct /*_method_list_t*/ {
unsigned int entsize; // sizeof(struct _objc_method)
unsigned int method_count;
struct _objc_method method_list[1];
} _OBJC_$_CATEGORY_INSTANCE_METHODS_RLPerson_$_Test __attribute__ ((used, section ("__DATA,__objc_const"))) = {
sizeof(_objc_method),
1,
{{(struct objc_selector *)"test", "v16@0:8", (void *)_I_RLPerson_Test_test}}
};
static struct /*_method_list_t*/ {
unsigned int entsize; // sizeof(struct _objc_method)
unsigned int method_count;
struct _objc_method method_list[1];
} _OBJC_$_CATEGORY_CLASS_METHODS_RLPerson_$_Test __attribute__ ((used, section ("__DATA,__objc_const"))) = {
sizeof(_objc_method),
1,
{{(struct objc_selector *)"eat", "v16@0:8", (void *)_C_RLPerson_Test_eat}}
};
源码分析
在objc-runtine-new.h中也能找到苹果源码中关于Category定义
struct category_t {
const char *name;
classref_t cls;
struct method_list_t *instanceMethods;
struct method_list_t *classMethods;
struct protocol_list_t *protocols;
struct property_list_t *instanceProperties;
// Fields below this point are not always present on disk.
struct property_list_t *_classProperties;
method_list_t *methodsForMeta(bool isMeta) {
if (isMeta) return classMethods;
else return instanceMethods;
}
property_list_t *propertiesForMeta(bool isMeta, struct header_info *hi);
protocol_list_t *protocolsForMeta(bool isMeta) {
if (isMeta) return nullptr;
else return protocols;
}
};
我们知道对象方法都是存放在类对象中,类方法存在元类对象,但是这里分类是放在同一个结构体,它后来是怎么处理的呢? 我们先找到runtime的**启动文件objc-os.mm **找到初始化方法
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
runtime_init();
exception_init();
cache_init();
_imp_implementationWithBlock_init();
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
}
#进入_dyld_objc_notify_register的map_images中
void
map_images(unsigned count, const char * const paths[],
const struct mach_header * const mhdrs[])
{
mutex_locker_t lock(runtimeLock);
return map_images_nolock(count, paths, mhdrs);
}
进入map_images_nolock,找到_read_images,作用加载一些镜像和模块
void
map_images_nolock(unsigned mhCount, const char * const mhPaths[],
const struct mach_header * const mhdrs[])
{
...
if (hCount > 0) {
_read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);
}
...
}
进入_read_images,发现注释 Discover categories
// Discover categories.
for (EACH_HEADER) {
bool hasClassProperties = hi->info()->hasCategoryClassProperties();
auto processCatlist = [&](category_t * const *catlist) {
for (i = 0; i < count; i++) {
category_t *cat = catlist[i];
Class cls = remapClass(cat->cls);
locstamped_category_t lc{cat, hi};
if (!cls) {
// Category's target class is missing (probably weak-linked).
// Ignore the category.
if (PrintConnecting) {
_objc_inform("CLASS: IGNORING category \?\?\?(%s) %p with "
"missing weak-linked target class",
cat->name, cat);
}
continue;
}
// Process this category.
if (cls->isStubClass()) {
// Stub classes are never realized. Stub classes
// don't know their metaclass until they're
// initialized, so we have to add categories with
// class methods or properties to the stub itself.
// methodizeClass() will find them and add them to
// the metaclass as appropriate.
if (cat->instanceMethods ||
cat->protocols ||
cat->instanceProperties ||
cat->classMethods ||
cat->protocols ||
(hasClassProperties && cat->_classProperties))
{
objc::unattachedCategories.addForClass(lc, cls);
}
} else {
// First, register the category with its target class.
// Then, rebuild the class's method lists (etc) if
// the class is realized.
if (cat->instanceMethods || cat->protocols
|| cat->instanceProperties)
{
if (cls->isRealized()) {
attachCategories(cls, &lc, 1, ATTACH_EXISTING);
} else {
objc::unattachedCategories.addForClass(lc, cls);
}
}
if (cat->classMethods || cat->protocols
|| (hasClassProperties && cat->_classProperties))
{
if (cls->ISA()->isRealized()) {
attachCategories(cls->ISA(), &lc, 1, ATTACH_EXISTING | ATTACH_METACLASS);
} else {
objc::unattachedCategories.addForClass(lc, cls->ISA());
}
}
}
}
};
processCatlist(_getObjc2CategoryList(hi, &count));
processCatlist(_getObjc2CategoryList2(hi, &count));
}
进入核心方法attachCategories(cls, &lc, 1, ATTACH_EXISTING)方法:
- cls为类,lc为分类
- 这里主要讲方法列表, 属性列表,协议列表,
- mlists[ATTACH_BUFSIZ - ++mcount] =
static void
attachCategories(Class cls, const locstamped_category_t *cats_list, uint32_t cats_count,
int flags)
{
if (slowpath(PrintReplacedMethods)) {
printReplacements(cls, cats_list, cats_count);
}
if (slowpath(PrintConnecting)) {
_objc_inform("CLASS: attaching %d categories to%s class '%s'%s",
cats_count, (flags & ATTACH_EXISTING) ? " existing" : "",
cls->nameForLogging(), (flags & ATTACH_METACLASS) ? " (meta)" : "");
}
/*
* Only a few classes have more than 64 categories during launch.
* This uses a little stack, and avoids malloc.
*
* Categories must be added in the proper order, which is back
* to front. To do that with the chunking, we iterate cats_list
* from front to back, build up the local buffers backwards,
* and call attachLists on the chunks. attachLists prepends the
* lists, so the final result is in the expected order.
*/
constexpr uint32_t ATTACH_BUFSIZ = 64;
method_list_t *mlists[ATTACH_BUFSIZ];
property_list_t *proplists[ATTACH_BUFSIZ];
protocol_list_t *protolists[ATTACH_BUFSIZ];
uint32_t mcount = 0;
uint32_t propcount = 0;
uint32_t protocount = 0;
bool fromBundle = NO;
bool isMeta = (flags & ATTACH_METACLASS);
// rw 可读写 得到类对象里面的数据
auto rw = cls->data();
for (uint32_t i = 0; i < cats_count; i++) {
auto& entry = cats_list[i];
method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
if (mlist) {
if (mcount == ATTACH_BUFSIZ) {
prepareMethodLists(cls, mlists, mcount, NO, fromBundle);
// 将所有分类的对象方法,附加到类对象的方法列表中
rw->methods.attachLists(mlists, mcount);
mcount = 0;
}
// 逆序 对将来方法调用先后很重要
mlists[ATTACH_BUFSIZ - ++mcount] = mlist;
fromBundle |= entry.hi->isBundle();
}
property_list_t *proplist =
entry.cat->propertiesForMeta(isMeta, entry.hi);
if (proplist) {
if (propcount == ATTACH_BUFSIZ) {
// 将所有分类的属性,附加到类对象的属性列表中
rw->properties.attachLists(proplists, propcount);
propcount = 0;
}
proplists[ATTACH_BUFSIZ - ++propcount] = proplist;
}
protocol_list_t *protolist = entry.cat->protocolsForMeta(isMeta);
if (protolist) {
if (protocount == ATTACH_BUFSIZ) {
// 将所有分类的协议,附加到类对象的协议列表中
rw->protocols.attachLists(protolists, protocount);
protocount = 0;
}
protolists[ATTACH_BUFSIZ - ++protocount] = protolist;
}
}
if (mcount > 0) {
prepareMethodLists(cls, mlists + ATTACH_BUFSIZ - mcount, mcount, NO, fromBundle);
rw->methods.attachLists(mlists + ATTACH_BUFSIZ - mcount, mcount);
if (flags & ATTACH_EXISTING) flushCaches(cls);
}
rw->properties.attachLists(proplists + ATTACH_BUFSIZ - propcount, propcount);
rw->protocols.attachLists(protolists + ATTACH_BUFSIZ - protocount, protocount);
}
进入核心方法attachLists
- memmove 内存挪动 将原来的方法列列表内存向后挪动addedCount单位
- memcpy 内存拷贝 将分类的方法列表拷贝到空的内存里
- 大致原理 之前我们知道类方法有rw表存放方法属性列表, 假设次是内存空间此时存放1,1指向方法列表 1.(rw -> methods)-> [1] -> 方法列表1
- 内存挪动 假设有俩个分类,那么原来的1向后挪动俩个位置[,,1]
- 内存拷贝 俩个分类2,3,拷贝到前面俩个位置[2,3,1],2,3分别指向方法列表2,方法列表3
- [2,3,1]也代表方法调用的顺序。分类列表之前讲过是逆序,所以后编译的先调用
void attachLists(List* const * addedLists, uint32_t addedCount) {
if (addedCount == 0) return;
if (hasArray()) {
// many lists -> many lists
uint32_t oldCount = array()->count;
uint32_t newCount = oldCount + addedCount;
// 重新分配内存
setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
array()->count = newCount;
// array()->lists 原来的方法列表 内存挪动 指针往后挪动到addedCount的位置
memmove(array()->lists + addedCount, array()->lists,
oldCount * sizeof(array()->lists[0]));
// addedLists 所有分类的方法列表 拷贝到原来的位置 所以分类的方法会比原来的先调用
memcpy(array()->lists, addedLists,
addedCount * sizeof(array()->lists[0]));
}
else if (!list && addedCount == 1) {
// 0 lists -> 1 list
list = addedLists[0];
}
else {
// 1 list -> many lists
List* oldList = list;
uint32_t oldCount = oldList ? 1 : 0;
uint32_t newCount = oldCount + addedCount;
setArray((array_t *)malloc(array_t::byteSize(newCount)));
array()->count = newCount;
if (oldList) array()->lists[addedCount] = oldList;
memcpy(array()->lists, addedLists,
addedCount * sizeof(array()->lists[0]));
}
}
Category和Class Extension区别
Class Extension是指
// class extension (匿名分类\类扩展)
@interface MJPerson()
{
int _abc;
}
@property (nonatomic, assign) int age;
- (void)abc;
@end
- Class Extension:在编译时候,它的数据就包含在类信息中
- Category: 运行时才把数据信息包含在类信息中
总结
- Category实现原理:编译之后底层结构是struct category_t, 里面存储着分类的方法列表,属性列表和协议列表,运行时,cattegory会利用runtime将数据合并到类信息中区(类对象和元类对象)
- 源码解读顺序:
- objc-os.mm
- _objc_init
- map_images
- map_images_nolock
- objc_run_time_new.mm 1._readImage 2.attachCategories 3.attachLists 4.relloc memmove, memcpy