数据结构和算法(15)- 最短路径

338 阅读7分钟

一.Dijkstra 算法

1.基本配置

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

#define MAXEDGE 20
#define MAXVEX 20
#define INFINITYC 65535

typedef int Status;
typedef struct
{
    int vexs[MAXVEX];
    int arc[MAXVEX][MAXVEX];
    int numVertexes, numEdges;
}MGraph;

/*用于存储最短路径下标的数组*/
typedef int Patharc[MAXVEX];
/*用于存储到各点最短路径权值的和*/
typedef int ShortPathTable[MAXVEX];

/*10.1 创建邻近矩阵*/
void CreateMGraph(MGraph *G)
{
    int i, j;
    G->numEdges=16;
    G->numVertexes=9;
    for (i = 0; i < G->numVertexes; i++)
    {
        G->vexs[i]=i;
    }
    for (i = 0; i < G->numVertexes; i++)
    {
        for ( j = 0; j < G->numVertexes; j++)
        {
            if (i==j)
                G->arc[i][j]=0;
            else
                G->arc[i][j] = G->arc[j][i] = INFINITYC;
        }
    }
    G->arc[0][1]=1;
    G->arc[0][2]=5;
    G->arc[1][2]=3;
    G->arc[1][3]=7;
    G->arc[1][4]=5;
    G->arc[2][4]=1;
    G->arc[2][5]=7;
    G->arc[3][4]=2;
    G->arc[3][6]=3;
    G->arc[4][5]=3;
    G->arc[4][6]=6;
    G->arc[4][7]=9;
    G->arc[5][7]=5;
    G->arc[6][7]=2;
    G->arc[6][8]=7;
    G->arc[7][8]=4;
    for(i = 0; i < G->numVertexes; i++)
    {
        for(j = i; j < G->numVertexes; j++)
        {
            G->arc[j][i] =G->arc[i][j];
        }
    }
}

2.核心实现

三个辅助数组:

  • 数组final表示V0到某个顶点Vw是否已经求得了最短路径的标记,如果V0Vw已经有结果,则final[w] = 1
  • 数组D表示V0到某个顶点Vw的路径
  • 数组p当前定点的前去定点的下标
void ShortestPath_Dijkstra(MGraph G, int v0, Patharc *P, ShortPathTable *D)
{
    int v,w,k,min;
    k = 0;
    /*final[w] = 1 表示求得顶点V0~Vw的最短路径*/
    int final[MAXVEX];
    /*1.初始化数据*/
    for(v=0; v<G.numVertexes; v++)
    {
        //全部顶点初始化为未知最短路径状态0
        final[v] = 0;
        //将与V0 点有连线的顶点最短路径值;
        (*D)[v] = G.arc[v0][v];
        //初始化路径数组p = 0;
        (*P)[v] = 0;
    }
    //V0到V0的路径为0
    (*D)[v0] = 0;
    //V0到V0 是没有路径的.
    final[v0] = 1;
    //v0到V0是没有路径的
    (*P)[v0] = -1;
    //2. 开始主循环,每次求得V0到某个顶点的最短路径
    for(v=1; v<G.numVertexes; v++)
    {
        //当前所知距离V0顶点最近的距离
        min=INFINITYC;
        /*3.寻找离V0最近的顶点*/
        for(w=0; w<G.numVertexes; w++)
        {
            if(!final[w] && (*D)[w]<min)
            {
                k=w;
                //w顶点距离V0顶点更近
                min = (*D)[w];
            }
        }
        //将目前找到最近的顶点置为1;
        final[k] = 1;
        /*4.把刚刚找到v0到v1最短路径的基础上,对于v1 与 其他顶点的边进行计算,得到v0与它们的当前最短距离;*/
        for(w=0; w<G.numVertexes; w++)
        {
            //如果经过v顶点的路径比现在这条路径长度短,则更新
            if(!final[w] && (min + G.arc[k][w]<(*D)[w]))
            {
                //找到更短路径, 则修改D[W],P[W]
                //修改当前路径的长度
                (*D)[w] = min + G.arc[k][w];
                (*P)[w]=k;
            }
        }
    }
}

3.调用

int main(void)
{
    printf("最短路径-Dijkstra算法\n");
    int i,j,v0;
    MGraph G;
    Patharc P;
    ShortPathTable D;
    v0=0;
    CreateMGraph(&G);
    ShortestPath_Dijkstra(G, v0, &P, &D);
    printf("最短路径路线:\n");
    for(i=0;i<G.numVertexes;++i)
    {
        printf("v%d -> v%d : ",v0,i);
        j=i;
        while(P[j]!=-1)
        {
            printf("%d ",P[j]);
            j=P[j];
        }
        printf("\n");
    }
    printf("\n最短路径权值和\n");
    for(i=0;i<G.numVertexes;++i)
        printf("v%d -> v%d : %d \n",G.vexs[0],G.vexs[i],D[i]);

    printf("\n");
    return 0;
}

4.输出

最短路径-Dijkstra算法
最短路径路线:
v0 -> v0 : 
v0 -> v1 : 0 
v0 -> v2 : 1 0 
v0 -> v3 : 4 2 1 0 
v0 -> v4 : 2 1 0 
v0 -> v5 : 4 2 1 0 
v0 -> v6 : 3 4 2 1 0 
v0 -> v7 : 6 3 4 2 1 0 
v0 -> v8 : 7 6 3 4 2 1 0 

最短路径权值和
v0 -> v0 : 0 
v0 -> v1 : 1 
v0 -> v2 : 4 
v0 -> v3 : 7 
v0 -> v4 : 5 
v0 -> v5 : 8 
v0 -> v6 : 10 
v0 -> v7 : 12 
v0 -> v8 : 16 

二.Floyd算法

1.核心代码

void ShortestPath_Floyd(MGraph G, Patharc *P, ShortPathTable *D)
{
    int v,w,k;
    
    /* 1. 初始化D与P 矩阵*/
    for(v=0; v<G.numVertexes; ++v)
    {
        for(w=0; w<G.numVertexes; ++w)
        {
            /* D[v][w]值即为对应点间的权值 */
            (*D)[v][w]=G.arc[v][w];
             /* 初始化P P[v][w] = w*/
            (*P)[v][w]=w;
        }
    }
    //2.K表示经过的中转顶点
    for(k=0; k<G.numVertexes; ++k)
    {
        for(v=0; v<G.numVertexes; ++v)
        {
            for(w=0; w<G.numVertexes; ++w)
            {
                /*如果经过下标为k顶点路径比原两点间路径更短 */
                if ((*D)[v][w]>(*D)[v][k]+(*D)[k][w])
                {
                    /* 将当前两点间权值设为更小的一个 */
                    (*D)[v][w]=(*D)[v][k]+(*D)[k][w];
                    /* 路径设置为经过下标为k的顶点 */
                    (*P)[v][w]=(*P)[v][k];
                }
            }
        }
    }
}

2.调用

int main(void)
{
    printf("Hello,最短路径弗洛伊德Floyd算法");
    int v,w,k;
    MGraph G;
    Patharc P;
    ShortPathTable D; /* 求某点到其余各点的最短路径 */
    CreateMGraph(&G);
    ShortestPath_Floyd(G,&P,&D);
    //打印所有可能的顶点之间的最短路径以及路线值
    printf("各顶点间最短路径如下:\n");
    for(v=0; v<G.numVertexes; ++v)
    {
        for(w=v+1; w<G.numVertexes; w++)
        {
            printf("v%d-v%d weight: %d ",v,w,D[v][w]);
            //获得第一个路径顶点下标
            k=P[v][w];
            //打印源点
            printf(" path: %d",v);
            //如果路径顶点下标不是终点
            while(k!=w)
            {
                //打印路径顶点
                printf(" -> %d",k);
                //获得下一个路径顶点下标
                k=P[k][w];
            }
            //打印终点
            printf(" -> %d\n",w);
        }
        printf("\n");
    }
    //打印最终变换后的最短路径D数组
    printf("最短路径D数组\n");
    for(v=0; v<G.numVertexes; ++v)
    {
        for(w=0; w<G.numVertexes; ++w)
        {
            printf("%d\t",D[v][w]);
        }
        printf("\n");
    }
    //打印最终变换后的最短路径P数组
    printf("最短路径P数组\n");
    for(v=0; v<G.numVertexes; ++v)
    {
        for(w=0; w<G.numVertexes; ++w)
        {
            printf("%d ",P[v][w]);
        }
        printf("\n");
    }
    return 0;
}

3.输出

Hello,最短路径弗洛伊德Floyd算法各顶点间最短路径如下:
v0-v1 weight: 1  path: 0 -> 1
v0-v2 weight: 4  path: 0 -> 1 -> 2
v0-v3 weight: 7  path: 0 -> 1 -> 2 -> 4 -> 3
v0-v4 weight: 5  path: 0 -> 1 -> 2 -> 4
v0-v5 weight: 8  path: 0 -> 1 -> 2 -> 4 -> 5
v0-v6 weight: 10  path: 0 -> 1 -> 2 -> 4 -> 3 -> 6
v0-v7 weight: 12  path: 0 -> 1 -> 2 -> 4 -> 3 -> 6 -> 7
v0-v8 weight: 16  path: 0 -> 1 -> 2 -> 4 -> 3 -> 6 -> 7 -> 8

v1-v2 weight: 3  path: 1 -> 2
v1-v3 weight: 6  path: 1 -> 2 -> 4 -> 3
v1-v4 weight: 4  path: 1 -> 2 -> 4
v1-v5 weight: 7  path: 1 -> 2 -> 4 -> 5
v1-v6 weight: 9  path: 1 -> 2 -> 4 -> 3 -> 6
v1-v7 weight: 11  path: 1 -> 2 -> 4 -> 3 -> 6 -> 7
v1-v8 weight: 15  path: 1 -> 2 -> 4 -> 3 -> 6 -> 7 -> 8

v2-v3 weight: 3  path: 2 -> 4 -> 3
v2-v4 weight: 1  path: 2 -> 4
v2-v5 weight: 4  path: 2 -> 4 -> 5
v2-v6 weight: 6  path: 2 -> 4 -> 3 -> 6
v2-v7 weight: 8  path: 2 -> 4 -> 3 -> 6 -> 7
v2-v8 weight: 12  path: 2 -> 4 -> 3 -> 6 -> 7 -> 8

v3-v4 weight: 2  path: 3 -> 4
v3-v5 weight: 5  path: 3 -> 4 -> 5
v3-v6 weight: 3  path: 3 -> 6
v3-v7 weight: 5  path: 3 -> 6 -> 7
v3-v8 weight: 9  path: 3 -> 6 -> 7 -> 8

v4-v5 weight: 3  path: 4 -> 5
v4-v6 weight: 5  path: 4 -> 3 -> 6
v4-v7 weight: 7  path: 4 -> 3 -> 6 -> 7
v4-v8 weight: 11  path: 4 -> 3 -> 6 -> 7 -> 8

v5-v6 weight: 7  path: 5 -> 7 -> 6
v5-v7 weight: 5  path: 5 -> 7
v5-v8 weight: 9  path: 5 -> 7 -> 8

v6-v7 weight: 2  path: 6 -> 7
v6-v8 weight: 6  path: 6 -> 7 -> 8

v7-v8 weight: 4  path: 7 -> 8


最短路径D数组
0	1	4	7	5	8	10	12	16	
1	0	3	6	4	7	9	11	15	
4	3	0	3	1	4	6	8	12	
7	6	3	0	2	5	3	5	9	
5	4	1	2	0	3	5	7	11	
8	7	4	5	3	0	7	5	9	
10	9	6	3	5	7	0	2	6	
12	11	8	5	7	5	2	0	4	
16	15	12	9	11	9	6	4	0	
最短路径P数组
0 1 1 1 1 1 1 1 1 
0 1 2 2 2 2 2 2 2 
1 1 2 4 4 4 4 4 4 
4 4 4 3 4 4 6 6 6 
2 2 2 3 4 5 3 3 3 
4 4 4 4 4 5 7 7 7 
3 3 3 3 3 7 6 7 7 
6 6 6 6 6 5 6 7 8 
7 7 7 7 7 7 7 7 8