基于Tensor Flow孤独的神经元之单细胞算法

106 阅读2分钟
  • import
    tensorflow
    as
    tf



  • with
    tf.name_scope(
    "data-set"
    ):



  • rlog =
    "./singlecell"




  • x = tf.constant(
    2.0
    , name =
    "input"
    )



  • w = tf.Variable(
    0.8
    , name =
    "weight"
    )



  • y_predict = tf.multiply(w, x, name =
    "output"
    )



  • y = tf.constant(
    0.0
    , name =
    "real_result"
    )



  • loss = tf.pow(y_predict - y,
    2
    , name =
    "loss"
    )







  • with
    tf.name_scope(
    "train"
    ):



  • train_step = tf.train.GradientDescentOptimizer(
    0.001
    ).minimize(loss)



  • with
    tf.name_scope(
    "summar"
    ):



  • for
    value
    in
    [x, w, y_predict, y, loss]:



  • tf.summary.scalar(value.op.name, value)



  • summaries = tf.summary.merge_all()







  • ss = tf.Session()



  • xsum = tf.summary.FileWriter(rlog, ss.graph)



  • init = tf.global_variables_initializer()



  • ss.run(init)







  • with
    tf.name_scope(
    "session"
    ):



  • for
    i
    in
    range(
    1000
    ):



  • xdat = ss.run(summaries)



  • xsum.add_summary(xdat, i)



  • xdat = ss.run(train_step)



  • x2 = ss.run(x)



  • y2 = ss.run(y_predict)



  • w2 = ss.run(w)



  • s2 = ss.run(loss)



  • if
    i %
    100
    ==
    0
    :



  • print(i,
    "#, y2:"
    ,y2,
    ", s2:"
    , s2,
    ", x2:"
    , x2,
    ", w2:"
    , w2 )



  • ss.close()


结果是:



  • 0 #,
    y2
    : 1
    .5872
    ,
    s2
    : 2
    .5192
    ,
    x2
    : 2
    .0
    ,
    w2
    : 0
    .7936




  • 100 #,
    y2
    : 0
    .710885
    ,
    s2
    : 0
    .505357
    ,
    x2
    : 2
    .0
    ,
    w2
    : 0
    .355442




  • 200 #,
    y2
    : 0
    .318395
    ,
    s2
    : 0
    .101375
    ,
    x2
    : 2
    .0
    ,
    w2
    : 0
    .159197




  • 300 #,
    y2
    : 0
    .142605
    ,
    s2
    : 0
    .020336
    ,
    x2
    : 2
    .0
    ,
    w2
    : 0
    .0713023




  • 400 #,
    y2
    : 0
    .0638705
    ,
    s2
    : 0
    .00407944
    ,
    x2
    : 2
    .0
    ,
    w2
    : 0
    .0319353




  • 500 #,
    y2
    : 0
    .0286067
    ,
    s2
    : 0
    .000818343
    ,
    x2
    : 2
    .0
    ,
    w2
    : 0
    .0143034




  • 600 #,
    y2
    : 0
    .0128125
    ,
    s2
    : 0
    .000164161
    ,
    x2
    : 2
    .0
    ,
    w2
    : 0
    .00640627




  • 700 #,
    y2
    : 0
    .00573855
    ,
    s2
    : 3
    .2931e-05
    ,
    x2
    : 2
    .0
    ,
    w2
    : 0
    .00286928




  • 800 #,
    y2
    : 0
    .00257022
    ,
    s2
    : 6
    .60601e-06
    ,
    x2
    : 2
    .0
    ,
    w2
    : 0
    .00128511




  • 900 #,
    y2
    : 0
    .00115116
    ,
    s2
    : 1
    .32518e-06
    ,
    x2
    : 2
    .0
    ,
    w2
    : 0
    .000575581



在cmd窗口输入:

tensorboard -logdir=C:\Users\wx\tensorflowcode\singlecell

然后在浏览器的地址栏中输入:

http://computer:6006

可以看到如下结果:

整个训练的数据流图如下:



更多免费技术资料可关注:annalin1203