前言
上篇简单整理了block日常使用过程中细节和应用,传送门Block之回炉学习。这节通过开源的代码进一步研究挖掘block,本文中的开源源码libclosure-73版本
生成cpp文件
为了更好的理解,这次我们在main.m文件中,写一个block
#import <UIKit/UIKit.h>
#import "AppDelegate.h"
int main(int argc, char * argv[]) {
NSString * appDelegateClassName;
@autoreleasepool {
// Setup code that might create autoreleased objects goes here.
appDelegateClassName = NSStringFromClass([AppDelegate class]);
__block NSString *string = [NSString stringWithFormat:@"hello"];
void (^block)(void) = ^{ // block_copy
string = @"hello world";
NSLog(@"Block - %@", string);
};
block();
}
return UIApplicationMain(argc, argv, nil, appDelegateClassName);
}
文件中因为引入了UIKit头文件,所以clang命令需要增加指定sdk的路径
clang -x objective-c -rewrite-objc -isysroot /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk main.m
或者使用xcrun命令
xcrun -sdk iphonesimulator clang -rewrite-objc main.m
底层block数据结构
// Values for Block_layout->flags to describe block objects
enum {
BLOCK_DEALLOCATING = (0x0001), // runtime
BLOCK_REFCOUNT_MASK = (0xfffe), // runtime
BLOCK_NEEDS_FREE = (1 << 24), // runtime
BLOCK_HAS_COPY_DISPOSE = (1 << 25), // compiler
BLOCK_HAS_CTOR = (1 << 26), // compiler: helpers have C++ code
BLOCK_IS_GC = (1 << 27), // runtime
BLOCK_IS_GLOBAL = (1 << 28), // compiler
BLOCK_USE_STRET = (1 << 29), // compiler: undefined if !BLOCK_HAS_SIGNATURE
BLOCK_HAS_SIGNATURE = (1 << 30), // compiler
BLOCK_HAS_EXTENDED_LAYOUT=(1 << 31) // compiler
};
#define BLOCK_DESCRIPTOR_1 1
struct Block_descriptor_1 {
uintptr_t reserved;
uintptr_t size;
};
#define BLOCK_DESCRIPTOR_2 1
struct Block_descriptor_2 {
// requires BLOCK_HAS_COPY_DISPOSE
BlockCopyFunction copy;
BlockDisposeFunction dispose;
};
#define BLOCK_DESCRIPTOR_3 1
struct Block_descriptor_3 {
// requires BLOCK_HAS_SIGNATURE
const char *signature;
const char *layout; // contents depend on BLOCK_HAS_EXTENDED_LAYOUT
};
struct Block_layout {
void *isa;
volatile int32_t flags; // contains ref count
int32_t reserved;
BlockInvokeFunction invoke;
struct Block_descriptor_1 *descriptor;
// imported variables
};
block拷贝 _Block_copy函数
上面代码中的block类型是NSMallocBlock,是从栈中拷贝到堆中,产看源码runtime.cpp中有**_Block_copy**函数
// Copy, or bump refcount, of a block. If really copying, call the copy helper if present.
void *_Block_copy(const void *arg) {
struct Block_layout *aBlock;
if (!arg) return NULL;
// The following would be better done as a switch statement
aBlock = (struct Block_layout *)arg;
if (aBlock->flags & BLOCK_NEEDS_FREE) {
// latches on high
latching_incr_int(&aBlock->flags);
return aBlock;
}
else if (aBlock->flags & BLOCK_IS_GLOBAL) {
return aBlock;
}
else {
// Its a stack block. Make a copy.
struct Block_layout *result =
(struct Block_layout *)malloc(aBlock->descriptor->size);
if (!result) return NULL;
memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
#if __has_feature(ptrauth_calls)
// Resign the invoke pointer as it uses address authentication.
result->invoke = aBlock->invoke;
#endif
// reset refcount
result->flags &= ~(BLOCK_REFCOUNT_MASK|BLOCK_DEALLOCATING); // XXX not needed
result->flags |= BLOCK_NEEDS_FREE | 2; // logical refcount 1
_Block_call_copy_helper(result, aBlock);
// Set isa last so memory analysis tools see a fully-initialized object.
result->isa = _NSConcreteMallocBlock;
return result;
}
}
该函数就是_NSConcreteStackBlock转换成_NSConcreteMallocBlock的过程,大概思路:
- 用BLOCK_NEEDS_FREE判断是否是堆block,如果是,进行引用计数的增加,通过latching_incr_int函数的实现,我们能看到每次增加2,此处增加2的原因是1的位置被BLOCK_DEALLOCATING占用了。增加后直接返回。
- 用BLOCK_IS_GLOBAL判断是否全局block,如果是直接返回。
- 如果是栈block,就malloc一个block,并把栈block的相关配置赋值到堆block上。此处调用了_Block_call_copy_helper函数,
static struct Block_descriptor_2 * _Block_descriptor_2(struct Block_layout *aBlock)
{
if (! (aBlock->flags & BLOCK_HAS_COPY_DISPOSE)) return NULL;
uint8_t *desc = (uint8_t *)aBlock->descriptor;
desc += sizeof(struct Block_descriptor_1);
return (struct Block_descriptor_2 *)desc;
}
static void _Block_call_copy_helper(void *result, struct Block_layout *aBlock)
{
struct Block_descriptor_2 *desc = _Block_descriptor_2(aBlock);
if (!desc) return;
(*desc->copy)(result, aBlock); // do fixup
}
通过判断flags中是否有BLOCK_HAS_COPY_DISPOSE标志,进行copy函数的调用。
BLOCK_HAS_COPY_DISPOSE标志的由来
BLOCK_HAS_COPY_DISPOSE标志是编译期确定的,取决于block是否自动获取了自动变量,而且这个自动变量是用__block修饰的。例子中的string变量就是被__block修饰的所以这个标志是存在的。而且在cpp文件中,还有相关函数的生成。
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {
_Block_object_assign((void*)&dst->string, (void*)src->string, 8/*BLOCK_FIELD_IS_BYREF*/);
}
static void __main_block_dispose_0(struct __main_block_impl_0*src) {
_Block_object_dispose((void*)src->string, 8/*BLOCK_FIELD_IS_BYREF*/);
}
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
BLOCK_HAS_COPY_DISPOSE标志存在,也就是Block_descriptor_2存在,进而就会调用执行
(*desc->copy)(result, aBlock);
最后进入到_Block_object_assign函数,此时传进来的参数是block中的string结构体指针
自动变量的内存管理_Block_object_assign
enum {
// see function implementation for a more complete description of these fields and combinations
BLOCK_FIELD_IS_OBJECT = 3, // id, NSObject, __attribute__((NSObject)), block, ...
BLOCK_FIELD_IS_BLOCK = 7, // a block variable
BLOCK_FIELD_IS_BYREF = 8, // the on stack structure holding the __block variable
BLOCK_FIELD_IS_WEAK = 16, // declared __weak, only used in byref copy helpers
BLOCK_BYREF_CALLER = 128, // called from __block (byref) copy/dispose support routines.
};
enum {
BLOCK_ALL_COPY_DISPOSE_FLAGS =
BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_BLOCK | BLOCK_FIELD_IS_BYREF |
BLOCK_FIELD_IS_WEAK | BLOCK_BYREF_CALLER
};
void _Block_object_assign(void *destArg, const void *object, const int flags) {
const void **dest = (const void **)destArg;
switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
case BLOCK_FIELD_IS_OBJECT:
/*******
id object = ...;
[^{ object; } copy];
********/
_Block_retain_object(object);
*dest = object;
break;
case BLOCK_FIELD_IS_BLOCK:
/*******
void (^object)(void) = ...;
[^{ object; } copy];
********/
*dest = _Block_copy(object);
break;
case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
case BLOCK_FIELD_IS_BYREF:
/*******
// copy the onstack __block container to the heap
// Note this __weak is old GC-weak/MRC-unretained.
// ARC-style __weak is handled by the copy helper directly.
__block ... x;
__weak __block ... x;
[^{ x; } copy];
********/
*dest = _Block_byref_copy(object);
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
/*******
// copy the actual field held in the __block container
// Note this is MRC unretained __block only.
// ARC retained __block is handled by the copy helper directly.
__block id object;
__block void (^object)(void);
[^{ object; } copy];
********/
*dest = object;
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK | BLOCK_FIELD_IS_WEAK:
/*******
// copy the actual field held in the __block container
// Note this __weak is old GC-weak/MRC-unretained.
// ARC-style __weak is handled by the copy helper directly.
__weak __block id object;
__weak __block void (^object)(void);
[^{ object; } copy];
********/
*dest = object;
break;
default:
break;
}
}
这段代码很简单,通过flags来判断当前的枚举类型,进行相应的处理。我们的例子中是用__block修饰的,所以属于BLOCK_FIELD_IS_BYREF类型,调用 _Block_byref_copy函数
_Block_byref_copy
// Runtime entry points for maintaining the sharing knowledge of byref data blocks.
// A closure has been copied and its fixup routine is asking us to fix up the reference to the shared byref data
// Closures that aren't copied must still work, so everyone always accesses variables after dereferencing the forwarding ptr.
// We ask if the byref pointer that we know about has already been copied to the heap, and if so, increment and return it.
// Otherwise we need to copy it and update the stack forwarding pointer
static struct Block_byref *_Block_byref_copy(const void *arg) {
struct Block_byref *src = (struct Block_byref *)arg;
if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
// src points to stack
struct Block_byref *copy = (struct Block_byref *)malloc(src->size);
copy->isa = NULL;
// byref value 4 is logical refcount of 2: one for caller, one for stack
copy->flags = src->flags | BLOCK_BYREF_NEEDS_FREE | 4;
//栈的forwarding和堆的forwarding同时指向堆区,这样就可以实现了block内部修改__block变量时,可以保持栈和堆同步的原因。
copy->forwarding = copy; // patch heap copy to point to itself
src->forwarding = copy; // patch stack to point to heap copy
copy->size = src->size;
if (src->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
// Trust copy helper to copy everything of interest
// If more than one field shows up in a byref block this is wrong XXX
struct Block_byref_2 *src2 = (struct Block_byref_2 *)(src+1);
struct Block_byref_2 *copy2 = (struct Block_byref_2 *)(copy+1);
copy2->byref_keep = src2->byref_keep;
copy2->byref_destroy = src2->byref_destroy;
if (src->flags & BLOCK_BYREF_LAYOUT_EXTENDED) {
struct Block_byref_3 *src3 = (struct Block_byref_3 *)(src2+1);
struct Block_byref_3 *copy3 = (struct Block_byref_3*)(copy2+1);
copy3->layout = src3->layout;
}
//主动调用一次keep
(*src2->byref_keep)(copy, src);
}
else {
// Bitwise copy.
// This copy includes Block_byref_3, if any.
memmove(copy+1, src+1, src->size - sizeof(*src));
}
}
// already copied to heap
else if ((src->forwarding->flags & BLOCK_BYREF_NEEDS_FREE) == BLOCK_BYREF_NEEDS_FREE) {
latching_incr_int(&src->forwarding->flags);
}
return src->forwarding;
}
这个函数就是将栈中的数据复制到堆区的具体函数实现,其中有几个点比较重要,
- forwarding指向
copy->forwarding = copy; // patch heap copy to point to itself
src->forwarding = copy; // patch stack to point to heap copy
栈的forwarding和堆的forwarding同时指向堆区,这样就可以实现了block内部修改__block变量时,可以保持栈和堆同步的原因。
- 主动调用了一次keep函数
(*src2->byref_keep)(copy, src);
为什么要主动调用一次keep函数呢?我们先来看看Block_byref结构体
// Values for Block_byref->flags to describe __block variables
enum {
// Byref refcount must use the same bits as Block_layout's refcount.
// BLOCK_DEALLOCATING = (0x0001), // runtime
// BLOCK_REFCOUNT_MASK = (0xfffe), // runtime
BLOCK_BYREF_LAYOUT_MASK = (0xf << 28), // compiler
BLOCK_BYREF_LAYOUT_EXTENDED = ( 1 << 28), // compiler
BLOCK_BYREF_LAYOUT_NON_OBJECT = ( 2 << 28), // compiler
BLOCK_BYREF_LAYOUT_STRONG = ( 3 << 28), // compiler
BLOCK_BYREF_LAYOUT_WEAK = ( 4 << 28), // compiler
BLOCK_BYREF_LAYOUT_UNRETAINED = ( 5 << 28), // compiler
BLOCK_BYREF_IS_GC = ( 1 << 27), // runtime
BLOCK_BYREF_HAS_COPY_DISPOSE = ( 1 << 25), // compiler
BLOCK_BYREF_NEEDS_FREE = ( 1 << 24), // runtime
};
struct Block_byref {
void *isa;
struct Block_byref *forwarding;
volatile int32_t flags; // contains ref count
uint32_t size;
};
struct Block_byref_2 {
// requires BLOCK_BYREF_HAS_COPY_DISPOSE
BlockByrefKeepFunction byref_keep;
BlockByrefDestroyFunction byref_destroy;
};
struct Block_byref_3 {
// requires BLOCK_BYREF_LAYOUT_EXTENDED
const char *layout;
};
byref_keep在Block_byref_2中定义的函数指针,相对位置第5个位置,现在我们看看在cpp文件的main函数中捕获的外部变量的第5个参数以及函数实现:
__attribute__((__blocks__(byref))) __Block_byref_string_0 string = {
(void*)0,//---1
(__Block_byref_string_0 *)&string,//---2
33554432,//---3
sizeof(__Block_byref_string_0),//---4
__Block_byref_id_object_copy_131,//---5
__Block_byref_id_object_dispose_131,//---6
((NSString * _Nonnull (*)(id, SEL, NSString * _Nonnull, ...))(void *)objc_msgSend)((id)objc_getClass("NSString"), sel_registerName("stringWithFormat:"), (NSString *)&__NSConstantStringImpl__var_folders_60_8_r2m72n2795wn0bkj4xfvwh0000gn_T_main_7333a4_mi_0)
};
static void __Block_byref_id_object_copy_131(void *dst, void *src) {
_Block_object_assign((char*)dst + 40, *(void * *) ((char*)src + 40), 131);
}
第二次调用_Block_object_assign
_Block_object_assign((char*)dst + 40, *(void * *) ((char*)src + 40), 131);
此次调用传进来的参数是外部变量的结构体,取结构体中便宜40位置的变量, 也就是获取到的是string变量
struct __Block_byref_string_0 {
void *__isa;//---8
__Block_byref_string_0 *__forwarding;//---8
int __flags;//---4
int __size;//---4
void (*__Block_byref_id_object_copy)(void*, void*);//---8
void (*__Block_byref_id_object_dispose)(void*);//---8
NSString *string;
};
_Block_object_assign实现内部走BLOCK_FIELD_IS_OBJECT分支

总结
这上面的过程中,一共发生了三次拷贝动作
- block从栈到堆的拷贝
- __block修饰的自动变量结构体的拷贝
- 自动变量的拷贝
有拷贝就有对应的释放操作,代码逻辑上其实差不多,这里就不多聊了。 这里只是把相关的函数按调用顺序列出来
- _Block_release --- 源码中
- (*desc->dispose)(aBlock); --- 源码中
- __Block_byref_id_object_dispose_131 --- cpp
- _Block_object_dispose ---cpp
- _Block_byref_release ---源码中
- (*byref2->byref_destroy)(byref); ---源码中
- _Block_object_dispose(*(void * ) ((char)src + 40), 131); --- cpp中