维基百科
数据仓库(data warehouse)是用于报告和数据分析的系统,被认为是商业智能的核心组件。 数据仓库是来自一个或多个不同源的集成数据的中央存储库。数据仓库将当前和历史数据存储在一起,用于为整个企业的员工创建分析报告。
存储在仓库中的数据从运行系统(例如营销或销售)上传。这些数据可能会通过一个ODS数据库,并且可能需要进行额外操作的数据清理,以确保数据质量,然后才能在数据仓库中用于报告。
典型的基于提取、转换、加载(ETL)的数据仓库使用分级、数据集成和访问层来存放其关键功能。分级层或分级数据库存储从每个不同的源数据系统中提取的原始数据。集成层通过转换来自分级层的数据,将不同的数据集合在一起,通常将转换后的数据存储在ODS数据库中。然后将集成的数据转移到另一个数据库(通常称为数据仓库数据库),在这个数据库中,数据被分为层次组(通常称为维度),并被分成事实和聚合事实。事实和维度的组合有时被称为星型模式。访问层帮助用户检索数据。
数据的主要来源被清理、转换、分类,并提供给管理人员和其他商业专业人员用于数据挖掘、在线分析处理、市场研究和决策支持。 然而,检索和分析数据、提取、转换和装载数据以及管理数据字典的方法也被认为是数据仓库系统的基本组成部分。许多数据仓库的文献都使用了这个更广泛的语境。因此,数据仓库的扩展定义包括商业智能工具、提取、转换和加载数据到存储库的工具,以及管理和检索元数据的工具。