labelme可以帮助我们快速的实现Mask-RCNN中数据集json文件的生成,然而还需要我们进一步的将json转成dataset,可以直接在cmd中执行labelme_json_to_dataset.exe C:\Users\Administrator\Desktop\total\1.json(路径),但是这个过程需要我们一个json文件的生成,过程很慢。
一、打开abelme安装目录 在lableme安装目录下有G:\Anaconda\Lib\site-packages\labelme\cli目录,可以看到json_to_dataset.py文件
这里面提供将json转成dataset的代码,所以我们只需要在这个基础上更改即可。
二、代码实现 复制json_to_dataset.py文件,代码更改:
import argparse import json import os import os.path as osp import warnings
import PIL.Image import yaml
from labelme import utils import base64
def main(): warnings.warn("This script is aimed to demonstrate how to convert the\n" "JSON file to a single image dataset, and not to handle\n" "multiple JSON files to generate a real-use dataset.") parser = argparse.ArgumentParser() parser.add_argument('json_file') parser.add_argument('-o', '--out', default=None) args = parser.parse_args()
json_file = args.json_file if args.out is None: out_dir = osp.basename(json_file).replace('.', '_') out_dir = osp.join(osp.dirname(json_file), out_dir) else: out_dir = args.out if not osp.exists(out_dir): os.mkdir(out_dir)
count = os.listdir(json_file) for i in range(0, len(count)): path = os.path.join(json_file, count) if os.path.isfile(path): data = json.load(open(path))
if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(path), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in data['shapes']: label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value
# label_values must be dense label_values, label_names = [], [] for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]): label_values.append(lv) label_names.append(ln) assert label_values == list(range(len(label_values)))
lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
captions = ['{}: {}'.format(lv, ln) for ln, lv in label_name_to_value.items()] lbl_viz = utils.draw_label(lbl, img, captions)
out_dir = osp.basename(count).replace('.', '_') out_dir = osp.join(osp.dirname(count), out_dir) if not osp.exists(out_dir): os.mkdir(out_dir)
PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) #PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png')) utils.lblsave(osp.join(out_dir, 'label.png'), lbl) PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))
with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in label_names: f.write(lbl_name + '\n')
warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=label_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False)
print('Saved to: %s' % out_dir) if __name__ == '__main__': main() 然后替换之前json_to_dataset.py文件。
三、执行与查看 在cmd中cd到label_json_to_dataset.py路径下,然后输入
路径只需要输入到文件夹即可,不需要具体指定json文件。
然后在安装目录下的Scripts路径下可以查看到批量保存的json文件夹。 --------------------- 作者:蹦跶的小羊羔 来源:CSDN 原文:blog.csdn.net/yql_6175402… 版权声明:本文为博主原创文章,转载请附上博文链接! |
|