顶点 边 无向图 度 有向图 入度 出度 待权图
存储方法:
- 邻接矩阵
- 邻接表
微博好友关系查找 内存 邻接表 逆邻接表 +红黑树 分治算法 硬盘存储 db uid toUid建立双向索引
深度搜索(Breadth-First-Searc)
广度搜索(Depth-First-Search)
public class Graph {
private int v;
private LinkedList<Integer> adj[]; // 邻接表
private boolean found = false;
public Graph(int v) {
this.v = v;
adj = new LinkedList[v];
for (int i = 0; i < v; i++) {
adj[i] = new LinkedList<Integer>();
}
}
public void addEdge(int s, int t) {
adj[s].add(t);
adj[t].add(s);
}
private void dfs(int s, int t) {
if (s == t) return;
found = false;
boolean[] visited = new boolean[v];
int[] prev = new int[v];
for (int i = 0; i < v; i++) {
prev[i] = -1;
}
recurDfs(s, t, visited, prev);
print(prev, s, t);
}
private void recurDfs(int w, int t, boolean[] visited, int[] prev) {
if (found == true) return;
visited[w] = true;
if (w == t) {
found = true;
return;
}
for (int i = 0; i < adj[w].size(); i++) {
int q = adj[w].get(i);
if (!visited[q]) {
prev[q] = w;
recurDfs(q, t, visited, prev);
}
}
}
private void bfs(int s, int t) {
if (s == t) return;
boolean[] visited = new boolean[v];
visited[s] = true;
int[] prev = new int[v];
for (int i = 0; i < v; i++) {
prev[i] = -1;
}
LinkedList<Integer> queue = new LinkedList<Integer>();
queue.offer(s);
while (queue.size() > 0) {
int w = queue.poll();
for (int i = 0; i < adj[w].size(); i++) {
int q = adj[w].get(i);
if (!visited[q]) {
prev[q] = w;
if (q == t) {
print(prev, s, t);
}
visited[q] = true;
queue.offer(q);
}
}
}
}
private void print(int[] prev, int s, int t) {
if (prev[t] != -1 && s != t) {
print(prev, s, prev[t]);
}
System.out.println(t + " ");
}
public static void main(String[] args) {
Graph g = new Graph(8);
g.addEdge(0, 1);
g.addEdge(0, 3);
g.addEdge(1, 2);
g.addEdge(1, 4);
g.addEdge(2, 5);
g.addEdge(3, 4);
g.addEdge(4, 5);
g.addEdge(4, 6);
g.addEdge(5, 7);
g.addEdge(6, 7);
g.bfs(0, 6);
System.out.println("");
g.dfs(0, 6);
}
}