并发编程的三个重要特性
- 原子性 : 一个的操作或者多次操作,要么所有的操作全部都得到执行并且不会收到任何因素的干扰而中断,要么所有的操作都执行,要么都不执行。synchronized 可以保证代码片段的原子性。
- 可见性 :当一个变量对共享变量进行了修改,那么另外的线程都是立即可以看到修改后的最新值。volatile 关键字可以保证共享变量的可见性。
- 有序性 :代码在执行的过程中的先后顺序,Java在编译器以及运行期间的优化,代码的执行顺序未必就是编写代码时候的顺序。volatile 关键字可以禁止指令进行重排序优化。
synchronized 关键字
对于 synchronized 关键字的了解
synchronized关键字解决的是多个线程之间访问资源的同步性,synchronized关键字可以保证被它修饰的方法或者代码块在任意时刻只能有一个线程执行。
在 Java 早期版本中,synchronized属于重量级锁,效率低下,因为Java的线程是映射到操作系统的原生线程之上的。如果要挂起或者唤醒一个线程,都需要操作系统帮忙完成,而操作系统实现线程之间的切换时需要从用户态转换到内核态,时间成本相对较高。
JDK1.6对锁的实现引入了大量的优化,如自旋锁、适应性自旋锁、锁消除、锁粗化、偏向锁、轻量级锁等技术来减少锁操作的开销。
synchronized关键字最主要的三种使用方式:
- 修饰实例方法:作用于当前对象实例加锁,进入同步代码前要获得当前对象实例的锁
- 修饰静态方法: 也就是给当前类加锁,会作用于类的所有对象实例,
因为静态成员不属于任何一个实例对象,是类成员(static表明这是该类的一个静态资源,不管new了多少个对象,只有一份)。
所以如果线程 A,B分别调用一个实例对象的静态和非静态synchronized方法,不会发生互斥现象,因为访问静态synchronized方法占用的锁是当前类的锁,而访问非静态 synchronized 方法占用的锁是当前实例对象锁。 - 修饰代码块: 指定加锁对象,对给定对象加锁,进入同步代码库前要获得给定对象的锁。
总结: synchronized 关键字加到 static 静态方法和 synchronized(class)代码块上都是是给 Class 类上锁。synchronized 关键字加到实例方法上是给对象实例上锁。尽量不要使用 synchronized(String a) 因为JVM中,字符串常量池具有缓存功能!
synchronized 关键字的底层原理
synchronized 同步语句块的情况
synchronized 同步语句块的实现使用的是 monitorenter 和monitorexit指令,其中 monitorenter 指令指向同步代码块的开始位置,monitorexit指令则指明同步代码块的结束位置。
当执行 monitorenter指令时,线程试图获取锁也就是获取monitor(monitor对象存在于每个Java对象的对象头中,synchronized锁便是通过这种方式获取锁的,也是为什么Java中任意对象可以作为锁的原因)的持有权。当计数器为0则可以成功获取,获取后将锁计数器设为1也就是加1。
相应的在执行monitorexit指令后,将锁计数器设为0,表明锁被释放。如果获取对象锁失败,那当前线程就要阻塞等待,直到锁被另外一个线程释放为止。
synchronized 修饰方法的的情况
synchronized 修饰的方法是通过ACC_SYNCHRONIZED标识,该标识指明了该方法是一个同步方法,JVM 通过该ACC_SYNCHRONIZED访问标志来辨别一个方法是否声明为同步方法,从而执行相应的同步调用
JDK1.6 之后的synchronized 关键字底层做了哪些优化,可以详细介绍一下这些优化
synchronized和ReentrantLock 的区别
1. 两者都是可重入锁
“可重入锁”概念是:自己可以再次获取自己的内部锁。比如一个线程获得了某个对象的锁,此时这个对象锁还没有释放,当其再次想要获取这个对象的锁的时候还是可以获取的,如果不可锁重入的话,就会造成死锁。同一个线程每次获取锁,锁的计数器都自增1,所以要等到锁的计数器下降为0时才能释放锁。
2. synchronized 依赖于 JVM 而 ReentrantLock 依赖于 API
synchronized 是依赖于 JVM 实现的,前面我们也讲到了 虚拟机团队在 JDK1.6 为 synchronized 关键字进行了很多优化,但是这些优化都是在虚拟机层面实现的,并没有直接暴露给我们。ReentrantLock 是 JDK 层面实现的(也就是 API 层面,需要 lock() 和 unlock() 方法配合try/finally语句块来完成),所以我们可以通过查看它的源代码,来看它是如何实现的。
3. ReentrantLock 比 synchronized 增加了一些高级功能
相比synchronized,ReentrantLock增加了一些高级功能。主要来说主要有三点:
- 等待可中断
- 可实现公平锁
- 可实现选择性通知(锁可以绑定多个条件)
- ReentrantLock提供了一种能够中断等待锁的线程的机制,通过lock.lockInterruptibly()来实现这个机制。也就是说正在等待的线程可以选择放弃等待,改为处理其他事情。
- ReentrantLock可以指定是公平锁还是非公平锁。而synchronized只能是非公平锁。所谓的公平锁就是先等待的线程先获得锁。 ReentrantLock默认情况是非公平的,可以通过 ReentrantLock类的ReentrantLock(boolean fair)构造方法来制定是否是公平的。
- synchronized关键字与wait()和notify()/notifyAll()方法相结合可以实现等待/通知机制,ReentrantLock类当然也可以实现,但是需要借助于Condition接口与newCondition() 方法。Condition是JDK1.5之后才有的,它具有很好的灵活性,比如可以实现多路通知功能也就是在一个Lock对象中可以创建多个Condition实例(即对象监视器),线程对象可以注册在指定的Condition中,从而可以有选择性的进行线程通知,在调度线程上更加灵活。 在使用notify()/notifyAll()方法进行通知时,被通知的线程是由 JVM 选择的,用ReentrantLock类结合Condition实例可以实现“选择性通知” ,这个功能非常重要,而且是Condition接口默认提供的。而synchronized关键字就相当于整个Lock对象中只有一个Condition实例,所有的线程都注册在它一个身上。如果执行notifyAll()方法的话就会通知所有处于等待状态的线程这样会造成很大的效率问题,而Condition实例的signalAll()方法 只会唤醒注册在该Condition实例中的所有等待线程。
volatile关键字
作用
在 JDK1.2 之前,Java的内存模型实现总是从主存(即共享内存)读取变量, 而在当前的 Java 内存模型下,线程可以把变量保存本地内存(比如机器的寄存器)中,而不是直接在主存中进行读写。
这就可能造成一个线程在主存中修改了一个变量的值,而另外一个线程还继续使用它在寄存器中的变量值的拷贝,造成数据的不一致
要解决这个问题,就需要把变量声明为volatile,这就指示JVM,这个变量是不稳定的,每次使用它都到主存中进行读取。
说白了, volatile 关键字的主要作用就是保证变量的可见性然后还有一个作用是防止指令重排序。
synchronized 关键字和 volatile 关键字的区别
synchronized 关键字和 volatile 关键字是两个互补的存在,而不是对立的存在:
- volatile关键字是线程同步的轻量级实现,所以volatile性能肯定比synchronized关键字要好。
- 但是volatile关键字只能用于变量而synchronized关键字可以修饰方法以及代码块
- synchronized关键字在JavaSE1.6之后进行了主要包括为了减少获得锁和释放锁带来的性能消耗而引入的偏向锁和轻量级锁以及其它各种优化之后执行效率有了显著提升,实际开发中使用 synchronized 关键字的场景还是更多一些。
- 多线程访问volatile关键字不会发生阻塞,而synchronized关键字可能会发生阻塞
- volatile关键字能保证数据的可见性,但不能保证数据的原子性。synchronized关键字两者都能保证。
- volatile关键字主要用于解决变量在多个线程之间的可见性,而synchronized关键字解决的是多个线程之间访问资源的同步性。
ThreadLocal
ThreadLocal简介
通常情况下,我们创建的变量是可以被任何一个线程访问并修改的。如果想实现每一个线程都有自己的专属本地变量该如何解决呢?
JDK中提供的ThreadLocal类正是为了解决这样的问题。ThreadLocal类主要解决的就是让每个线程绑定自己的值,可以将ThreadLocal类形象的比喻成存放数据的盒子,盒子中可以存储每个线程的私有数据。
如果你创建了一个ThreadLocal变量,那么访问这个变量的每个线程都会有这个变量的本地副本。他们可以使用get()和set()方法来获取默认值或将其值更改为当前线程所存的副本的值,从而避免了线程安全问题。
ThreadLocal底层原理
出Thread 类中有一个 threadLocals 和 一个 inheritableThreadLocals 变量,它们都是 ThreadLocalMap 类型的变量,我们可以把 ThreadLocalMap 理解为ThreadLocal 类实现的定制化的 HashMap。默认情况下这两个变量都是null,只有当前线程调用 ThreadLocal 类的 set或get方法时才创建它们,实际上调用这两个方法的时候,我们调用的是ThreadLocalMap类对应的 get()、set() 方法。
最终的变量是放在了当前线程的 ThreadLocalMap 中,并不是存在 ThreadLocal 上,ThreadLocal 可以理解为只是ThreadLocalMap的封装,传递了变量值。 ThrealLocal 类中可以通过Thread.currentThread()获取到当前线程对象后,直接通过getMap(Thread t)可以访问到该线程的ThreadLocalMap对象。
每个Thread中都具备一个ThreadLocalMap,而ThreadLocalMap可以存储以ThreadLocal为key ,Object 对象为 value的键值对。
比如我们在同一个线程中声明了两个 ThreadLocal 对象的话,会使用 Thread内部都是使用仅有那个ThreadLocalMap 存放数据的,ThreadLocalMap的 key 就是 ThreadLocal对象,value 就是 ThreadLocal 对象调用set方法设置的值。
ThreadLocal 内存泄露问题
ThreadLocalMap 中使用的 key 为 ThreadLocal 的弱引用,而 value 是强引用。
所以,如果ThreadLocal没有被外部强引用的情况下,在垃圾回收的时候,key 会被清理掉,而 value 不会被清理掉。这样一来,ThreadLocalMap 中就会出现key为null的Entry。
假如我们不做任何措施的话,value永远无法被GC回收,这个时候就可能会产生内存泄露。ThreadLocalMap实现中已经考虑了这种情况,在调用 set()、get()、remove() 方法的时候,会清理掉 key 为 null 的记录。使用完 ThreadLocal方法后 最好手动调用remove()方法
Atomic 原子类
JUC 包中的原子类是哪4类?
- 基本类型 使用原子的方式更新基本类型
- AtomicInteger:整形原子类
- AtomicLong:长整型原子类
- AtomicBoolean:布尔型原子类
- 数组类型 使用原子的方式更新数组里的某个元素
- AtomicIntegerArray:整形数组原子类
- AtomicLongArray:长整形数组原子类
- AtomicReferenceArray:引用类型数组原子类
- 引用类型
- AtomicReference:引用类型原子类
- AtomicStampedReference:原子更新引用类型里的字段原子类
- AtomicMarkableReference :原子更新带有标记位的引用类型
- 对象的属性修改类型
- AtomicIntegerFieldUpdater:原子更新整形字段的更新器
- AtomicLongFieldUpdater:原子更新长整形字段的更新器
- AtomicStampedReference:原子更新带有版本号的引用类型。该类将整数值与引用关联起来,可用于解决原子的更新数据和数据的版本号,可以解决使用 CAS 进行原子更新时可能出现的 ABA 问题。
线程池
为什么要用线程池?
- 线程池提供了一种限制和管理资源(包括执行一个任务)。
- 每个线程池还维护一些基本统计信息,例如已完成任务的数量
- 降低资源消耗。
- 提高响应速度。
- 提高线程的可管理性。