结构划分概念
- 逻辑结构:线性结构、集合结构、树形结构、图形结构
- 物理结构:顺序储存结构、链式结构
-> 和 .
- 如果是指针 *p->data
- 如果是对象 p.data
顺序栈
#include <stdio.h>
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 20 /* 存储空间初始分配量 */
typedef int Status;
typedef int Element;
/*顺序结构*/
typedef struct {
Element data[MAXSIZE];
int top;//用于指向栈顶
}Stack;
//1.构建空栈
Status initStack(Stack *S) {
S->top = -1;//以-1代表空战
return OK;
}
//2.栈置空
Status nilStack(Stack *S) {
//栈置空不需要将栈里面的元素清空,只需要修改top就行,因为数组空间已开始就已经分配了
S->top = -1;
return OK;
}
//3.判断栈是否为空
Status empty(Stack S) {
if (S.top == -1) {
return OK;
} else {
return ERROR;
}
}
//栈长
int lengthStack(Stack S) {
return S.top + 1;
}
//获取栈顶
Status queryTopStack(Stack S,Element *e) {
if (S.top == -1) {
return ERROR;
} else {
*e = S.data[S.top];
return OK;
}
}
//.push
Status push(Stack *S,Element e) {
//满了
if (S->top == MAXSIZE-1) {
printf("!!!stack is full");
return ERROR;
} else {
//栈顶指针+1;
S->top ++;
//将新插入的元素赋值给栈顶空间
S->data[S->top] = e;
// S->data[S->top + 1] = e;
// S->top = S->top + 1;
return OK;
}
}
//pop
Status pop(Stack *S,Element *e) {
if (S->top == -1) {
printf("!!!stack is empty");
return ERROR;
} else {
//将要删除的栈顶元素赋值给e
*e = S->data[S->top];
//栈顶指针--;
S->top --;
return OK;
}
}
//遍历 从栈底到栈顶依次对栈中的每个元素打印
Status traverse(Stack S) {
if (S.top == -1) {
printf("!!!stack is empty");
return ERROR;
}else {
for (int i = 0; i < S.top; i ++) {
printf("%d, ",S.data[i]);
}
printf("\n");
return OK;
}
}
int main(int argc, const char * argv[]) {
// insert code here...
printf("Hello, World!\n");
//测试
Stack S;
//新建空栈
Status status = initStack(&S);
traverse(S);
//空栈判断
Status isEmpty = empty(S);
//push
if (status) {
for (int j = 1; j < 10; j ++) {
push(&S,j);
}
}
traverse(S);
//获取栈顶
Element e;
queryTopStack(S, &e);
//pop
pop(&S, &e);
traverse(S);
//栈长
int length = lengthStack(S);
//置空
nilStack(&S);
traverse(S);
return 0;
}
链式栈
#include <stdio.h>
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 20 /* 存储空间初始分配量 */
typedef int STATUS;
typedef int ELEMENT;
//链式栈结构节点
typedef struct StackNode{
ELEMENT data;
struct StackNode *next;
}StackNode, *LinkStackPtr;
typedef struct {
LinkStackPtr top;//指向栈顶的指针
int count;//数量
}LinkStack;
//构造一个空栈
STATUS StackInit(LinkStack *S) {
S->top = NULL;
S->count = 0;
return OK;
}
//置空链栈
STATUS StackClear(LinkStack *S) {
LinkStackPtr p,q;
p = S->top;
while (p) {
//保存当前节点
q = p;
//下一个
p = p->next;
//释放当前节点
free(q);
}
//释放完后
S->count = 0;
return OK;
}
//是否为空栈
STATUS StackIsEmpty(LinkStack S) {
if (S.count == 0) {
return TRUE;
} else {
return FALSE;
}
}
//获取栈顶
STATUS StackTop(LinkStack S,ELEMENT *e) {
if (S.top == NULL) {
return ERROR;
} else {
*e = S.top->data;
return OK;
}
}
//链长:元素的个数
int StackLenght(LinkStack S) {
return S.count;
}
//push
STATUS StackPush(LinkStack *S,ELEMENT e) {
//创建新的节点
LinkStackPtr temp = (LinkStackPtr)malloc(sizeof(StackNode));
//赋值
temp->data = e;
//把当前的栈顶元素赋值给新结点的直接后继,
temp->next = S->top;
//将新结点temp 赋值给栈顶指针
S->top = temp;
//count +1
S->count++;
return OK;
}
//pop
STATUS StackPop(LinkStack *S,ELEMENT *e) {
if (S->top == NULL) {
return ERROR;
}
//将栈顶结点赋值给p
LinkStackPtr temp;
temp = S->top;
//将栈顶元素赋值给*e
e = &S->top->data;
//使得栈顶指针下移一位, 指向后一结点.
S->top = S->top->next;
//count-1
S->count--;
//释放节点空间
free(temp);
return OK;
}
//遍历链栈
STATUS StackTraverse(LinkStack S) {
LinkStackPtr p = S.top;
while (p) {
printf("%d ",p->data);
p = p->next;
}
printf("\n");
return OK;
}
int main(int argc, const char * argv[]) {
// insert code here...
printf("Hello, World!\n");
int j;
LinkStack s;
int e;
if(StackInit(&s)==OK)
for(j=1;j<=10;j++)
StackPush(&s,j);
printf("栈中元素依次为:");
StackTraverse(s);
StackPop(&s,&e);
printf("弹出的栈顶元素 e=%d\n",e);
StackTraverse(s);
printf("栈空否:%d(1:空 0:否)\n",StackIsEmpty(s));
StackTop(s,&e);
printf("栈顶元素 e=%d 栈的长度为%d\n",e,StackLenght(s));
StackClear(&s);
printf("清空栈后,栈空否:%d(1:空 0:否)\n",StackIsEmpty(s));
return 0;
}
递归工作栈
数据结构是不是递归?链表是不是递归?问题是不是递归?如果有一项是,就可以采用递归
- 分治法
- 大问题能拆成小问题,但是大问题解决的方法和小问题解决的方法相同或者大部分相同。eg:n!阶乘。求10! 就要求10*9!,求9! 就要求9*8!
- 拆完之后,问题会简单
- 必须有一递归的出口(边界)
- 斐波那契数列
#include <stdio.h>
int Fbi(int i){
if(i<2)
return i == 0?0:1;
return Fbi(i-1)+Fbi(i-2);
}
int main(int argc, const char * argv[]) {
// insert code here...
printf("斐波拉契数列!\n");
// 1 1 2 3 5 8 13 21 34 55 89 144
for (int i =0; i < 10; i++) {
printf("%d ",Fbi(i));
}
printf("\n");
return 0;
}
斐波那契数列的算法实现会开辟大量的空间,并且空间的数据结构和栈很相似
