1.双向链表
1.1定义
单向链表中各结点中都只包含一个指针next,且都统一指向直接后继结点。 双向链表是在单向链表的基础上添加了前驱指针prior。
结点的结构定义如下:
//定义结点
typedef struct Node{
ElemType data; //用于存储数据元素
struct Node *prior; //用于指向当前节点的直接前驱节点;
struct Node *next; //用于指向当前节点的直接后继节点
}Node;
双向链表的结构
1.2创建
下面我们创建一个带头结点的双向链表。
Status createLinkList(LinkList *L){
//*L 指向头结点
*L = (LinkList)malloc(sizeof(Node));
if (*L == NULL) return ERROR;
//头结点数据初始化
(*L)->prior = NULL;
(*L)->next = NULL;
(*L)->data = -1;
return OK;
}
1.3插入
a. 创建要插入的结点D b. 找到A c. 将A的next(也就是B结点)的prior指向D d. 将D的next指向B e. 将A的next指向D f. 将D的prior指向A 这样就断开了A与B之间的链接,建立起了B与D, A与D的链接。如下图所示
Status ListInsert(LinkList *L, int i, ElemType data){
//1. 插入的位置不合法 为0或者为负数
if(i < 1) return ERROR;
//2. 新建结点
LinkList temp = (LinkList)malloc(sizeof(Node));
temp->data = data;
temp->prior = NULL;
temp->next = NULL;
//3.将p指向头结点!
LinkList p = *L;
//4. 找到插入位置i直接的结点
for(int j = 1; j < i && p;j++)
p = p->next;
//5. 如果插入的位置超过链表本身的长度
if(p == NULL){
return ERROR;
}
//6. 判断插入位置是否为链表尾部;
if (p->next == NULL) {
p->next = temp;
temp->prior = p;
}else
{
// 将p->next 结点的前驱prior = temp
p->next->prior = temp;
// 将temp->next 指向原来的p->next
temp->next = p->next;
// p->next 更新成新创建的temp
p->next = temp;
// 新创建的temp前驱 = p
temp->prior = p;
}
return OK;
}
1.4删除
根据索引删除节点时,只需遍历链表找到要删除的结点的前一个,更改前驱节点的next和后继节点的prior即可。
Status ListDelete(LinkList *L, int i, ElemType *e){
int k = 1;
LinkList p = (*L);
//1.判断双向链表是否为空,如果为空则返回ERROR;
if (*L == NULL) {
return ERROR;
}
//2. 将指针p移动到删除元素位置前一个
while (k < i && p != NULL) {
p = p->next;
k++;
}
//3.如果k>i 或者 p == NULL 则返回ERROR
if (k>i || p == NULL) {
return ERROR;
}
//4.创建临时指针delTemp 指向要删除的结点,并将要删除的结点的data 赋值给*e,带回到main函数
LinkList delTemp = p->next;
*e = delTemp->data;
//5. p->next 等于要删除的结点的下一个结点
p->next = delTemp->next;
//6. 如果删除结点的下一个结点不为空,则将将要删除的下一个结点的前驱指针赋值p;
if (delTemp->next != NULL) {
delTemp->next->prior = p;
}
//7.删除delTemp结点
free(delTemp);
return OK;
}
根据值删除节点时,只需遍历链表找到要删除的结点,更改前驱节点的next和后继节点的prior即可。
//删除双向链表指定的元素
Status LinkListDeletVAL(LinkList *L, int data){
LinkList p = *L;
//1.遍历双向循环链表
while (p) {
//2.判断当前结点的数据域和data是否相等,若相等则删除该结点
if (p->data == data) {
//修改被删除结点的前驱结点的后继指针,参考图上步骤1️⃣
p->prior->next = p->next;
//修改被删除结点的后继结点的前驱指针,参考图上步骤2️⃣
if(p->next != NULL){
p->next->prior = p->prior;
}
//释放被删除结点p
free(p);
//退出循环
break;
}
//没有找到该结点,则继续移动指针p
p = p->next;
}
return OK;
}
2.双向循环链表
双向循环链表,与双向链表相比尾结点的next不在为空,而是指向了头结点,形成了一个闭环。双向循环链表的结点结构与双向链表的结构完全相同。
2.1创建
代码如下
Status creatLinkList(LinkList *L){
*L = (LinkList)malloc(sizeof(Node));
if (*L == NULL) {
return ERROR;
}
(*L)->next = (*L);
(*L)->prior = (*L);
(*L)->data = -1;
return OK;
}
2.2插入
双向循环链表的插入过程与双向链表的插入个过程一模一样。
Status LinkListInsert(LinkList *L, int index, ElemType e){
//1. 创建指针p,指向双向链表头
LinkList p = (*L);
int i = 1;
//2.双向循环链表为空,则返回error
if(*L == NULL) return ERROR;
//3.找到插入前一个位置上的结点p
while (i < index && p->next != *L) {
p = p->next;
i++;
}
//4.如果i>index 则返回error
if (i > index) return ERROR;
//5.创建新结点temp
LinkList temp = (LinkList)malloc(sizeof(Node));
//6.temp 结点为空,则返回error
if (temp == NULL) return ERROR;
//7.将生成的新结点temp数据域赋值e.
temp->data = e;
//8.将结点temp 的前驱结点为p;
temp->prior = p;
//9.temp的后继结点指向p->next;
temp->next = p->next;
//10.p的后继结点的前驱为temp;
p->next->prior = temp;
//11.新结点temp成为p的新的后继结点;
p->next = temp;
return OK;
}
2.3删除
Status LinkListDelete(LinkList *L,int index,ElemType *e){
int i = 1;
LinkList temp = (*L)->next;
if (*L == NULL) {
return ERROR;
}
//如果删除到只剩下首元结点了,则直接将*L置空;
if(temp->next == *L){
free(*L);
(*L) = NULL;
return OK;
}
//1.找到要删除的结点
while (i < index) {
temp = temp->next;
i++;
}
//2.给e赋值要删除结点的数据域
*e = temp->data;
//3.修改被删除结点的前驱结点的后继指针
temp->prior->next = temp->next;
//4.修改被删除结点的后继结点的前驱指针
temp->next->prior = temp->prior;
//5. 释放结点temp
free(temp);
return OK;
}