前言
- 基于哈希表的Map接口的实现,带有弱键。
- 如果WeakHashMap中的条目不再是普通使用的键,它将自动被删除。
- 更准确地说,给定键的映射的存在不会阻止该键被垃圾收集器丢弃,即被终结化,终结和回收。
- 丢弃键后,其条目会从映射中有效删除,因此此类的行为与其他Map实现有所不同。
- 空值和空键均受支持。该类的性能与HashMap类类似,并且具有相同的效率参数,即初始容量和负载因子。
- 像大多数集合类一样,此类也不同步。
- 可以使用{@link Collections#synchronizedMap Collections.synchronizedMap}方法构造同步的WeakHashMap。
- 此类主要用于其equals方法使用==运算符测试对象标识的关键对象。
- 一旦丢弃了这样的key,就永远无法重新创建它,
- 因此以后不可能在WeakHashMap中对该key进行查找,并且会惊讶地发现它的条目已被删除。
- 此类将与其equals方法不基于对象标识的键对象(例如String实例)完美配合。
- 但是,使用此类可重新创建的键对象,自动删除其键已被丢弃的WeakHashMap条目可能会造成混淆。
- WeakHashMap类的行为部分取决于垃圾回收器的操作,因此对于该类,不存在几个熟悉的(尽管不是必需的)Map不变量。
- 因为垃圾收集器可以随时丢弃键,所以WeakHashMap的行为可能就像未知线程正在静默删除条目一样。
- 特别是,即使您在WeakHashMap实例上进行同步并且不调用其任何mutator方法,size方法也可能会随时间返回较小的值,
- isEmpty方法可能会返回false,然后返回true,containsKey方法会返回对于给定的键,为true,然后为false;
- 对于给定的键,get方法返回一个值,但之后返回null;
- 对于put的方法,返回null;
- 对于remove方法,为先前似乎位于该键中的键,返回remove。
- 映射,并用于键集,值集合和条目集的连续检查,以依次生成较小数量的元素。
- WeakHashMap中的每个关键对象都作为弱引用的引用间接存储。
- 因此,只有在垃圾回收器清除了映射内部和外部的弱引用之后,才会自动删除密钥。
- 实施注意事项:WeakHashMap中的value对象由普通的强引用保存。
- 因此,应注意确保值对象不会直接或间接强烈引用其自身的键,因为这将防止键被丢弃。
- 注意,值对象可以通过WeakHashMap本身间接引用其键;
- 也就是说,值对象可以强引用某个其他键对象,而其关联的值对象又强引用第一值对象的键。
- 如果映射中的值不依赖于对它们持有强烈引用的映射,则一种解决方法是在插入之前将值本身包装在WeakReferences中,
- 例如:m.put(key,new WeakReference(value)),然后在每次获取时展开。
- 由此类的所有“集合视图方法”返回的集合的迭代器方法返回的迭代器都是快速失败的:
- 如果在创建迭代器后的任何时间对结构进行结构修改,则除了通过迭代器自己的remove之外,都可以通过其他方式进行方法,
- 迭代器将抛出{@link ConcurrentModificationException}。
- 因此,面对并发修改,迭代器会快速干净地失败,而不会在未来的不确定时间内冒任意,不确定的行为的风险。
- 注意,迭代器的快速失败行为无法得到保证,因为通常来说,在存在不同步的并发修改的情况下,不可能做出任何严格的保证。
- 快速失败的迭代器会尽最大努力抛出ConcurrentModificationException。
- 因此,编写依赖于此异常的程序的正确性是错误的:迭代器的快速失败行为仅应用于检测错误。
源码
package java.util;
public class WeakHashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V> {
private static final int DEFAULT_INITIAL_CAPACITY = 16;
private static final int MAXIMUM_CAPACITY = 1 << 30;
private static final float DEFAULT_LOAD_FACTOR = 0.75f;
Entry<K,V>[] table;
private int size;
private int threshold;
private final float loadFactor;
private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
int modCount;
@SuppressWarnings("unchecked")
private Entry<K,V>[] newTable(int n) {
return (Entry<K,V>[]) new Entry<?,?>[n];
}
/**
* 使用给定的初始容量和给定的负载因子构造一个新的空WeakHashMap。
*/
public WeakHashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Initial Capacity: "+
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load factor: "+
loadFactor);
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
table = newTable(capacity);
this.loadFactor = loadFactor;
threshold = (int)(capacity * loadFactor);
}
/**
* 使用给定的初始容量和默认负载因子(0.75)构造一个新的空WeakHashMap。
*/
public WeakHashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* 使用默认的初始容量(16)和负载因子(0.75)构造一个新的空WeakHashMap。
*/
public WeakHashMap() {
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
/**
* 构造一个新的WeakHashMap,其映射与指定的映射相同。
* 使用默认的加载因子(0.75)和足以容纳指定映射中的映射的初始容量来创建WeakHashMap。
*/
public WeakHashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY),
DEFAULT_LOAD_FACTOR);
putAll(m);
}
private static final Object NULL_KEY = new Object();
private static Object maskNull(Object key) {
return (key == null) ? NULL_KEY : key;
}
static Object unmaskNull(Object key) {
return (key == NULL_KEY) ? null : key;
}
private static boolean eq(Object x, Object y) {
return x == y || x.equals(y);
}
/**
* 检索对象哈希码,并对结果哈希应用补充哈希函数,以防止质量差的哈希函数。
* 这很关键,因为HashMap使用2的幂的哈希表,否则哈希表在低位无差异时会遇到冲突。
*
*/
final int hash(Object k) {
int h = k.hashCode();
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
/**
* Returns index for hash code h.
*/
private static int indexFor(int h, int length) {
return h & (length-1);
}
/**
* Expunges stale entries from the table.
*/
private void expungeStaleEntries() {
for (Object x; (x = queue.poll()) != null; ) {
synchronized (queue) {
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>) x;
int i = indexFor(e.hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> p = prev;
while (p != null) {
Entry<K,V> next = p.next;
if (p == e) {
if (prev == e)
table[i] = next;
else
prev.next = next;
// Must not null out e.next;
// stale entries may be in use by a HashIterator
e.value = null; // Help GC
size--;
break;
}
prev = p;
p = next;
}
}
}
}
/**
* Returns the table after first expunging stale entries.
*/
private Entry<K,V>[] getTable() {
expungeStaleEntries();
return table;
}
/**
* 返回此映射中的key-value 映射数。
* 此结果是快照,并且可能不会反映未处理的条目,这些条目将在下次尝试访问之前被删除,因为它们不再被引用。
*/
public int size() {
if (size == 0)
return 0;
expungeStaleEntries();
return size;
}
/**
* 如果此映射不包含键值映射,则返回 true 。
* 此结果是快照,并且可能不会反映未处理的条目,这些条目将在下次尝试访问之前被删除,因为它们不再被引用。
*
*/
public boolean isEmpty() {
return size() == 0;
}
/**
* 返回指定键映射到的值;如果此映射不包含键的映射,则返回{@code null}。
* 更正式地讲,如果该映射包含从键{@code k}到值{@code v}的映射,
* 使得{@code(key == null?k == null:key.equals(k))},
* 然后此方法返回{@code v};否则返回{@code null}。
* (最多可以有一个这样的映射。)返回值{@code null}不一定表示该映射不包含该键的映射。
* 映射也可能将键显式映射到{@code null}。
* {@link
*/
public V get(Object key) {
Object k = maskNull(key);
int h = hash(k);
Entry<K,V>[] tab = getTable();
int index = indexFor(h, tab.length);
Entry<K,V> e = tab[index];
while (e != null) {
if (e.hash == h && eq(k, e.get()))
return e.value;
e = e.next;
}
return null;
}
/**
* 判断当前map是否包含指定的key
*/
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
/**
* 返回与此映射中的指定键关联的条目。如果映射不包含此键的映射,则返回null。
*/
Entry<K,V> getEntry(Object key) {
Object k = maskNull(key);
int h = hash(k);
Entry<K,V>[] tab = getTable();
int index = indexFor(h, tab.length);
Entry<K,V> e = tab[index];
while (e != null && !(e.hash == h && eq(k, e.get())))
e = e.next;
return e;
}
/**
* 将指定值与该映射中的指定键相关联。如果该映射先前包含此键的映射,则将替换旧值。
*/
public V put(K key, V value) {
Object k = maskNull(key);
int h = hash(k);
Entry<K,V>[] tab = getTable();
int i = indexFor(h, tab.length);
for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
if (h == e.hash && eq(k, e.get())) {
V oldValue = e.value;
if (value != oldValue)
e.value = value;
return oldValue;
}
}
modCount++;
Entry<K,V> e = tab[i];
tab[i] = new Entry<>(k, value, queue, h, e);
if (++size >= threshold)
resize(tab.length * 2);
return null;
}
/**
* 将此映射的内容重新映射到容量更大的新数组中。
* 当此映射中的键数达到其阈值时,将自动调用此方法。
* 如果当前容量为MAXIMUM_CAPACITY,则此方法不会调整map的大小,而是将阈值设置为Integer.MAX_VALUE。
*/
void resize(int newCapacity) {
Entry<K,V>[] oldTable = getTable();
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
Entry<K,V>[] newTable = newTable(newCapacity);
transfer(oldTable, newTable);
table = newTable;
/*
* If ignoring null elements and processing ref queue caused massive
* shrinkage, then restore old table. This should be rare, but avoids
* unbounded expansion of garbage-filled tables.
*/
if (size >= threshold / 2) {
threshold = (int)(newCapacity * loadFactor);
} else {
expungeStaleEntries();
transfer(newTable, oldTable);
table = oldTable;
}
}
/** Transfers all entries from src to dest tables */
private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
for (int j = 0; j < src.length; ++j) {
Entry<K,V> e = src[j];
src[j] = null;
while (e != null) {
Entry<K,V> next = e.next;
Object key = e.get();
if (key == null) {
e.next = null; // Help GC
e.value = null; // " "
size--;
} else {
int i = indexFor(e.hash, dest.length);
e.next = dest[i];
dest[i] = e;
}
e = next;
}
}
}
/**
* 将所有映射从指定映射复制到此映射。
* 这些映射将替换该映射对指定映射中当前存在的任何键的任何映射。
*/
public void putAll(Map<? extends K, ? extends V> m) {
int numKeysToBeAdded = m.size();
if (numKeysToBeAdded == 0)
return;
if (numKeysToBeAdded > threshold) {
int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
if (targetCapacity > MAXIMUM_CAPACITY)
targetCapacity = MAXIMUM_CAPACITY;
int newCapacity = table.length;
while (newCapacity < targetCapacity)
newCapacity <<= 1;
if (newCapacity > table.length)
resize(newCapacity);
}
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
put(e.getKey(), e.getValue());
}
/**
* 如果存在,则从此弱哈希映射中删除键的映射。
* 更正式地讲,如果此映射包含从键k到值v的映射,使得(key == null?k == null:key.equals(k)),则将删除该映射。
* (该映射最多可以包含一个这样的映射。)
* 返回此映射先前与该键相关联的值;如果该映射不包含该键的映射,则返回null。
* 返回值null不一定表示该映射不包含该键的映射。映射也可能将键显式映射为null。
* 调用返回后,该映射将不包含指定键的映射。
*
*/
public V remove(Object key) {
Object k = maskNull(key);
int h = hash(k);
Entry<K,V>[] tab = getTable();
int i = indexFor(h, tab.length);
Entry<K,V> prev = tab[i];
Entry<K,V> e = prev;
while (e != null) {
Entry<K,V> next = e.next;
if (h == e.hash && eq(k, e.get())) {
modCount++;
size--;
if (prev == e)
tab[i] = next;
else
prev.next = next;
return e.value;
}
prev = e;
e = next;
}
return null;
}
/** Special version of remove needed by Entry set */
boolean removeMapping(Object o) {
if (!(o instanceof Map.Entry))
return false;
Entry<K,V>[] tab = getTable();
Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
Object k = maskNull(entry.getKey());
int h = hash(k);
int i = indexFor(h, tab.length);
Entry<K,V> prev = tab[i];
Entry<K,V> e = prev;
while (e != null) {
Entry<K,V> next = e.next;
if (h == e.hash && e.equals(entry)) {
modCount++;
size--;
if (prev == e)
tab[i] = next;
else
prev.next = next;
return true;
}
prev = e;
e = next;
}
return false;
}
/**
* 从该地图中删除所有映射。此调用返回后,地图将为空。
*/
public void clear() {
while (queue.poll() != null)
;
modCount++;
Arrays.fill(table, null);
size = 0;
// Allocation of array may have caused GC, which may have caused
// additional entries to go stale. Removing these entries from the
// reference queue will make them eligible for reclamation.
while (queue.poll() != null)
;
}
/**
* 如果此映射将一个或多个键映射到指定值,则返回 true 。
*/
public boolean containsValue(Object value) {
if (value==null)
return containsNullValue();
Entry<K,V>[] tab = getTable();
for (int i = tab.length; i-- > 0;)
for (Entry<K,V> e = tab[i]; e != null; e = e.next)
if (value.equals(e.value))
return true;
return false;
}
/**
* containsVulues的特殊情况。
*/
private boolean containsNullValue() {
Entry<K,V>[] tab = getTable();
for (int i = tab.length; i-- > 0;)
for (Entry<K,V> e = tab[i]; e != null; e = e.next)
if (e.value==null)
return true;
return false;
}
/**
* 该哈希表中的条目使用其主引用字段作为键扩展了WeakReference。
*/
private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
V value;
final int hash;
Entry<K,V> next;
/**
* Creates new entry.
*/
Entry(Object key, V value,
ReferenceQueue<Object> queue,
int hash, Entry<K,V> next) {
super(key, queue);
this.value = value;
this.hash = hash;
this.next = next;
}
@SuppressWarnings("unchecked")
public K getKey() {
return (K) WeakHashMap.unmaskNull(get());
}
public V getValue() {
return value;
}
public V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
K k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
V v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
public int hashCode() {
K k = getKey();
V v = getValue();
return Objects.hashCode(k) ^ Objects.hashCode(v);
}
public String toString() {
return getKey() + "=" + getValue();
}
}
private abstract class HashIterator<T> implements Iterator<T> {
private int index;
private Entry<K,V> entry;
private Entry<K,V> lastReturned;
private int expectedModCount = modCount;
/**
* Strong reference needed to avoid disappearance of key
* between hasNext and next
*/
private Object nextKey;
/**
* Strong reference needed to avoid disappearance of key
* between nextEntry() and any use of the entry
*/
private Object currentKey;
HashIterator() {
index = isEmpty() ? 0 : table.length;
}
public boolean hasNext() {
Entry<K,V>[] t = table;
while (nextKey == null) {
Entry<K,V> e = entry;
int i = index;
while (e == null && i > 0)
e = t[--i];
entry = e;
index = i;
if (e == null) {
currentKey = null;
return false;
}
nextKey = e.get(); // hold on to key in strong ref
if (nextKey == null)
entry = entry.next;
}
return true;
}
/** The common parts of next() across different types of iterators */
protected Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (nextKey == null && !hasNext())
throw new NoSuchElementException();
lastReturned = entry;
entry = entry.next;
currentKey = nextKey;
nextKey = null;
return lastReturned;
}
public void remove() {
if (lastReturned == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
WeakHashMap.this.remove(currentKey);
expectedModCount = modCount;
lastReturned = null;
currentKey = null;
}
}
private class ValueIterator extends HashIterator<V> {
public V next() {
return nextEntry().value;
}
}
private class KeyIterator extends HashIterator<K> {
public K next() {
return nextEntry().getKey();
}
}
private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
public Map.Entry<K,V> next() {
return nextEntry();
}
}
// Views
private transient Set<Map.Entry<K,V>> entrySet;
/**
* 返回此映射中包含的键的{@link Set}视图。
* 该集合由地图支持,因此对地图的更改会反映在集合中,反之亦然。
* 如果在对集合进行迭代时修改了映射(通过迭代器自己的remove操作除外),则迭代的结果不确定。
* 该集合支持元素删除,该元素通过Iterator.remove,Set.remove,removeAll,retainAll和clear操作从映射中删除相应的映射。
* 它不支持add或addAll操作。
*
*/
public Set<K> keySet() {
Set<K> ks = keySet;
if (ks == null) {
ks = new KeySet();
keySet = ks;
}
return ks;
}
private class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return new KeyIterator();
}
public int size() {
return WeakHashMap.this.size();
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
if (containsKey(o)) {
WeakHashMap.this.remove(o);
return true;
}
else
return false;
}
public void clear() {
WeakHashMap.this.clear();
}
public Spliterator<K> spliterator() {
return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
}
}
/**
* 返回此映射中包含的值的{@link Collection}视图。
* 集合由地图支持,因此对地图的更改会反映在集合中,反之亦然。
* 如果在对集合进行迭代时修改了映射(通过迭代器自己的remove操作除外),则迭代的结果是不确定的。
* 集合支持元素删除,该元素通过Iterator.remove,Collection.remove,removeAll,retainAll和clear操作从映射中删除相应的映射。
* 它不支持add或addAll操作。
*
*/
public Collection<V> values() {
Collection<V> vs = values;
if (vs == null) {
vs = new Values();
values = vs;
}
return vs;
}
private class Values extends AbstractCollection<V> {
public Iterator<V> iterator() {
return new ValueIterator();
}
public int size() {
return WeakHashMap.this.size();
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
WeakHashMap.this.clear();
}
public Spliterator<V> spliterator() {
return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
}
}
/**
* 返回此映射中包含的映射的{@link Set}视图。
* 该集合由地图支持,因此对地图的更改会反映在集合中,反之亦然。
* 如果在对集合进行迭代时修改了映射(通过迭代器自己的remove操作或通过迭代器返回的映射条目上的setValue操作除外),则迭代的结果不确定。
* 该集合支持元素删除,该元素通过Iterator.remove,Set.remove,removeAll,retainAll和clear操作从映射中删除相应的映射。
* 它不支持add或addAll操作。
*
*/
public Set<Map.Entry<K,V>> entrySet() {
Set<Map.Entry<K,V>> es = entrySet;
return es != null ? es : (entrySet = new EntrySet());
}
private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
Entry<K,V> candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
public boolean remove(Object o) {
return removeMapping(o);
}
public int size() {
return WeakHashMap.this.size();
}
public void clear() {
WeakHashMap.this.clear();
}
private List<Map.Entry<K,V>> deepCopy() {
List<Map.Entry<K,V>> list = new ArrayList<>(size());
for (Map.Entry<K,V> e : this)
list.add(new AbstractMap.SimpleEntry<>(e));
return list;
}
public Object[] toArray() {
return deepCopy().toArray();
}
public <T> T[] toArray(T[] a) {
return deepCopy().toArray(a);
}
public Spliterator<Map.Entry<K,V>> spliterator() {
return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
}
}
@SuppressWarnings("unchecked")
@Override
public void forEach(BiConsumer<? super K, ? super V> action) {
Objects.requireNonNull(action);
int expectedModCount = modCount;
Entry<K, V>[] tab = getTable();
for (Entry<K, V> entry : tab) {
while (entry != null) {
Object key = entry.get();
if (key != null) {
action.accept((K)WeakHashMap.unmaskNull(key), entry.value);
}
entry = entry.next;
if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
}
@SuppressWarnings("unchecked")
@Override
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
Objects.requireNonNull(function);
int expectedModCount = modCount;
Entry<K, V>[] tab = getTable();;
for (Entry<K, V> entry : tab) {
while (entry != null) {
Object key = entry.get();
if (key != null) {
entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);
}
entry = entry.next;
if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
}
/**
* Similar form as other hash Spliterators, but skips dead
* elements.
*/
static class WeakHashMapSpliterator<K,V> {
final WeakHashMap<K,V> map;
WeakHashMap.Entry<K,V> current; // current node
int index; // current index, modified on advance/split
int fence; // -1 until first use; then one past last index
int est; // size estimate
int expectedModCount; // for comodification checks
WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,
int fence, int est,
int expectedModCount) {
this.map = m;
this.index = origin;
this.fence = fence;
this.est = est;
this.expectedModCount = expectedModCount;
}
final int getFence() { // initialize fence and size on first use
int hi;
if ((hi = fence) < 0) {
WeakHashMap<K,V> m = map;
est = m.size();
expectedModCount = m.modCount;
hi = fence = m.table.length;
}
return hi;
}
public final long estimateSize() {
getFence(); // force init
return (long) est;
}
}
static final class KeySpliterator<K,V>
extends WeakHashMapSpliterator<K,V>
implements Spliterator<K> {
KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}
public KeySpliterator<K,V> trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null :
new KeySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
expectedModCount);
}
public void forEachRemaining(Consumer<? super K> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
WeakHashMap<K,V> m = map;
WeakHashMap.Entry<K,V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = tab.length;
}
else
mc = expectedModCount;
if (tab.length >= hi && (i = index) >= 0 &&
(i < (index = hi) || current != null)) {
WeakHashMap.Entry<K,V> p = current;
current = null; // exhaust
do {
if (p == null)
p = tab[i++];
else {
Object x = p.get();
p = p.next;
if (x != null) {
@SuppressWarnings("unchecked") K k =
(K) WeakHashMap.unmaskNull(x);
action.accept(k);
}
}
} while (p != null || i < hi);
}
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
public boolean tryAdvance(Consumer<? super K> action) {
int hi;
if (action == null)
throw new NullPointerException();
WeakHashMap.Entry<K,V>[] tab = map.table;
if (tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index++];
else {
Object x = current.get();
current = current.next;
if (x != null) {
@SuppressWarnings("unchecked") K k =
(K) WeakHashMap.unmaskNull(x);
action.accept(k);
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
}
return false;
}
public int characteristics() {
return Spliterator.DISTINCT;
}
}
static final class ValueSpliterator<K,V>
extends WeakHashMapSpliterator<K,V>
implements Spliterator<V> {
ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}
public ValueSpliterator<K,V> trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null :
new ValueSpliterator<K,V>(map, lo, index = mid, est >>>= 1,
expectedModCount);
}
public void forEachRemaining(Consumer<? super V> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
WeakHashMap<K,V> m = map;
WeakHashMap.Entry<K,V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = tab.length;
}
else
mc = expectedModCount;
if (tab.length >= hi && (i = index) >= 0 &&
(i < (index = hi) || current != null)) {
WeakHashMap.Entry<K,V> p = current;
current = null; // exhaust
do {
if (p == null)
p = tab[i++];
else {
Object x = p.get();
V v = p.value;
p = p.next;
if (x != null)
action.accept(v);
}
} while (p != null || i < hi);
}
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
public boolean tryAdvance(Consumer<? super V> action) {
int hi;
if (action == null)
throw new NullPointerException();
WeakHashMap.Entry<K,V>[] tab = map.table;
if (tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index++];
else {
Object x = current.get();
V v = current.value;
current = current.next;
if (x != null) {
action.accept(v);
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
}
return false;
}
public int characteristics() {
return 0;
}
}
static final class EntrySpliterator<K,V>
extends WeakHashMapSpliterator<K,V>
implements Spliterator<Map.Entry<K,V>> {
EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}
public EntrySpliterator<K,V> trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null :
new EntrySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
expectedModCount);
}
public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
WeakHashMap<K,V> m = map;
WeakHashMap.Entry<K,V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = tab.length;
}
else
mc = expectedModCount;
if (tab.length >= hi && (i = index) >= 0 &&
(i < (index = hi) || current != null)) {
WeakHashMap.Entry<K,V> p = current;
current = null; // exhaust
do {
if (p == null)
p = tab[i++];
else {
Object x = p.get();
V v = p.value;
p = p.next;
if (x != null) {
@SuppressWarnings("unchecked") K k =
(K) WeakHashMap.unmaskNull(x);
action.accept
(new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
}
}
} while (p != null || i < hi);
}
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
int hi;
if (action == null)
throw new NullPointerException();
WeakHashMap.Entry<K,V>[] tab = map.table;
if (tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index++];
else {
Object x = current.get();
V v = current.value;
current = current.next;
if (x != null) {
@SuppressWarnings("unchecked") K k =
(K) WeakHashMap.unmaskNull(x);
action.accept
(new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
}
return false;
}
public int characteristics() {
return Spliterator.DISTINCT;
}
}
}
```
* Collections.synchronizedMap
* java 里的equals方法总结。
* 强引用和弱引用
* 哈希表