进程是系统中资源分配的最小单位;线程是系统中资源调度的最小单位。
每个进程有独立的地址空间,进程之间相互隔离: 代码段(代码和常数) 数据段(全局变量、静态变量) 扩展段(堆存储)
而同一个进程下的线程,共享同一个地址空间,各线程的运行时段(栈、pc指针)是独立的。
1 进程间通信
进程间通信可以是同一台主机上两个进程的通信,也可以是两台主机上两个线程间的通信。需要结合实际的场景选择合适的通信机制。
1.1 进程间通信之管道
1.1.1 管道(Pipe)
可用于具有亲缘关系(如:父子)进程间的通信。
它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端。
它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)。
它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。
#include <unistd.h>
int pipe(int fd[2]); // 返回值:若成功返回0,失败返回-1;
它会创建两个文件描述符:fd[0]为读而打开,fd[1]为写而打开。

单个进程中的管道几乎没有任何用处。所以,通常调用 pipe 的进程接着调用 fork,这样就创建了父进程与子进程之间的 IPC 通道。如下图所示:

若要数据流从父进程流向子进程,则关闭父进程的读端(fd[0])与子进程的写端(fd[1]);反之,则可以使数据流从子进程流向父进程。
1 #include<stdio.h>
2 #include<unistd.h>
3
4 int main()
5 {
6 int fd[2]; // 两个文件描述符
7 pid_t pid;
8 char buff[20];
9
10 if(pipe(fd) < 0) // 创建管道
11 printf("Create Pipe Error!\n");
12
13 if((pid = fork()) < 0) // 创建子进程
14 printf("Fork Error!\n");
15 else if(pid > 0) // 父进程
16 {
17 close(fd[0]); // 关闭读端
18 write(fd[1], "hello world\n", 12);
19 }
20 else
21 {
22 close(fd[1]); // 关闭写端
23 read(fd[0], buff, 20);
24 printf("%s", buff);
25 }
26
27 return 0;
28 }
1.1.2 有名管道(FIFO)
有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。
FIFO有路径名与之相关联,它以一种特殊设备文件形式存在于文件系统中。
#include <sys/stat.h>
int mkfifo(const char *pathname, mode_t mode); // 返回值:成功返回0,出错返回-1
其中的 mode 参数与open函数中的 mode 相同。一旦创建了一个 FIFO,就可以用一般的文件I/O函数操作它。
当 open 一个FIFO时,是否设置非阻塞标志(O_NONBLOCK)的区别:
若没有指定O_NONBLOCK(默认),只读 open 要阻塞到某个其他进程为写而打开此 FIFO。类似的,只写 open 要阻塞到某个其他进程为读而打开它。
若指定了O_NONBLOCK,则只读 open 立即返回。而只写 open 将出错返回 -1 如果没有进程已经为读而打开该 FIFO,其errno置ENXIO。
FIFO的通信方式类似于在进程中使用文件来传输数据,只不过FIFO类型文件同时具有管道的特性。在数据读出时,FIFO管道中同时清除数据,并且“先进先出”。下面的例子演示了使用 FIFO 进行 IPC 的过程:
//write_fifo.c
1 #include<stdio.h>
2 #include<stdlib.h> // exit
3 #include<fcntl.h> // O_WRONLY
4 #include<sys/stat.h>
5 #include<time.h> // time
6
7 int main()
8 {
9 int fd;
10 int n, i;
11 char buf[1024];
12 time_t tp;
13
14 printf("I am %d process.\n", getpid()); // 说明进程ID
15
16 if((fd = open("fifo1", O_WRONLY)) < 0) // 以写打开一个FIFO
17 {
18 perror("Open FIFO Failed");
19 exit(1);
20 }
21
22 for(i=0; i<10; ++i)
23 {
24 time(&tp); // 取系统当前时间
25 n=sprintf(buf,"Process %d's time is %s",getpid(),ctime(&tp));
26 printf("Send message: %s", buf); // 打印
27 if(write(fd, buf, n+1) < 0) // 写入到FIFO中
28 {
29 perror("Write FIFO Failed");
30 close(fd);
31 exit(1);
32 }
33 sleep(1); // 休眠1秒
34 }
35
36 close(fd); // 关闭FIFO文件
37 return 0;
38 }
//read_fifo.c
1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<errno.h>
4 #include<fcntl.h>
5 #include<sys/stat.h>
6
7 int main()
8 {
9 int fd;
10 int len;
11 char buf[1024];
12
13 if(mkfifo("fifo1", 0666) < 0 && errno!=EEXIST) // 创建FIFO管道
14 perror("Create FIFO Failed");
15
16 if((fd = open("fifo1", O_RDONLY)) < 0) // 以读打开FIFO
17 {
18 perror("Open FIFO Failed");
19 exit(1);
20 }
21
22 while((len = read(fd, buf, 1024)) > 0) // 读取FIFO管道
23 printf("Read message: %s", buf);
24
25 close(fd); // 关闭FIFO文件
26 return 0;
27 }
1.2 信号(Signal)
用过Windows的我们都知道,当我们无法正常结束一个程序时,可以用任务管理器强制结束这个进程,但这其实是怎么实现的呢?同样的功能在Linux上是通过生成信号和捕获信号来实现的,运行中的进程捕获到这个信号然后作出一定的操作并最终被终止。 信号是UNIX和Linux系统响应某些条件而产生的一个事件,接收到该信号的进程会相应地采取一些行动。通常信号是由一个错误产生的。但它们还可以作为进程间通信或修改行为的一种方式,明确地由一个进程发送给另一个进程。一个信号的产生叫生成,接收到一个信号叫捕获。
信号是比较复杂的通信方式,用于通知接收进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身。
用户进程对信号的响应方式:
忽略信号:对信号不做任何处理,但是有两个信号不能忽略,SIGKILL及SIGSTOP。
捕捉信号:定义信号处理函数,当信号发生时,执行相应的处理函数。
执行缺省操作:Linux对每种信号都规定了默认操作
SIGINT:ctrl+c 终止信号
SIGQUIT:ctrl+\ 终止信号
SIGTSTP:ctrl+z 暂停信号
SIGALRM:闹钟信号 收到此信号后定时结束,结束进程
SIGCHLD:子进程状态改变,父进程收到信号
SIGKILL:杀死信号
信号触发方法
可以通过两个函数kill和alarm来发送一个信号。
进程可以通过kill函数向包括它本身在内的其他进程发送一个信号,如果程序没有发送这个信号的权限,对kill函数的调用就将失败,而失败的常见原因是目标进程由另一个用户所拥有。想一想也是容易明白的,你总不能控制别人的程序吧,当然超级用户root,这种上帝般的存在就除外了。
#include <sys/types.h>
#include <signal.h>
int kill(pid_t pid, int sig);
alarm给我们提供了一个闹钟的功能,进程可以调用alarm函数在经过预定时间后向发送一个SIGALRM信号。
#include <unistd.h>
unsigned int alarm(unsigned int seconds);
alarm函数用来在seconds秒之后安排发送一个SIGALRM信号,如果seconds为0,将取消所有已设置的闹钟请求。alarm函数的返回值是以前设置的闹钟时间的余留秒数,如果返回失败返回-1。
信号处理方法
#include <signal.h>
void (*signal(int sig, void (*func)(int)))(int);
程序可用使用signal函数来处理指定的信号,主要通过忽略和恢复其默认行为来工作。 这是一个相当复杂的声明,耐心点看可以知道signal是一个带有sig和func两个参数的函数,func是一个类型为void (*)(int)的函数指针。该函数返回一个与func相同类型的指针,指向先前指定信号处理函数的函数指针。准备捕获的信号的参数由sig给出,接收到的指定信号后要调用的函数由参数func给出。其实这个函数的使用是相当简单的,通过下面的例子就可以知道。注意信号处理函数的原型必须为void func(int),或者是下面的特殊值: SIG_IGN:忽略信号 SIG_DFL:恢复信号的默认行为
#include <unistd.h>
#include <sys/types.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
static int alarm_fired = 0;
void ouch(int sig)
{
alarm_fired = 1;
}
int main()
{
pid_t pid;
pid = fork();
switch(pid)
{
case -1:
perror("fork failed\n");
exit(1);
case 0:
//子进程
sleep(5);
//向父进程发送信号
kill(getppid(), SIGALRM);
exit(0);
default:;
}
//设置处理函数
signal(SIGALRM, ouch);
while(!alarm_fired)
{
printf("Hello World!\n");
sleep(1);
}
if(alarm_fired)
printf("\nI got a signal %d\n", SIGALRM);
exit(0);
}
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
void ouch(int sig)
{
printf("\nOUCH! - I got signal %d\n", sig);
//恢复终端中断信号SIGINT的默认行为
(void) signal(SIGINT, SIG_DFL);
}
int main()
{
//改变终端中断信号SIGINT的默认行为,使之执行ouch函数
//而不是终止程序的执行
(void) signal(SIGINT, ouch);
while(1)
{
printf("Hello World!\n");
sleep(1);
}
return 0;
}
1.3 消息队列(Message)
消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。
消息队列存放在内核中。一个消息队列由一个标识符(即队列ID)来标识。
消息队列是面向记录的,其中的消息具有特定的格式以及特定的优先级。 消息队列独立于发送与接收进程。进程终止时,消息队列及其内容并不会被删除。 消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取。
1 #include <sys/msg.h>
2 // 创建或打开消息队列:成功返回队列ID,失败返回-1
3 int msgget(key_t key, int flag);
4 // 添加消息:成功返回0,失败返回-1
5 int msgsnd(int msqid, const void *ptr, size_t size, int flag);
6 // 读取消息:成功返回消息数据的长度,失败返回-1
7 int msgrcv(int msqid, void *ptr, size_t size, long type,int flag);
8 // 控制消息队列:成功返回0,失败返回-1
9 int msgctl(int msqid, int cmd, struct msqid_ds *buf);
在以下两种情况下,msgget将创建一个新的消息队列:
1、如果没有与键值key相对应的消息队列,并且flag中包含了IPC_CREAT标志位。
2、key参数为IPC_PRIVATE。
函数msgrcv在读取消息队列时,type参数有下面几种情况:
1、type == 0,返回队列中的第一个消息;
2、type > 0,返回队列中消息类型为 type 的第一个消息;
3、type < 0,返回队列中消息类型值小于或等于 type 绝对值的消息,如果有多个,则取类型值最小的消息。
可以看出,type值非 0 时用于以非先进先出次序读消息。也可以把 type 看做优先级的权值。
下面写了一个简单的使用消息队列进行IPC的例子,服务端程序一直在等待特定类型的消息,当收到该类型的消息以后,发送另一种特定类型的消息作为反馈,客户端读取该反馈并打印出来。
//msg_server.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/msg.h>
4
5 // 用于创建一个唯一的key
6 #define MSG_FILE "/etc/passwd"
7
8 // 消息结构
9 struct msg_form {
10 long mtype;
11 char mtext[256];
12 };
13
14 int main()
15 {
16 int msqid;
17 key_t key;
18 struct msg_form msg;
19
20 // 获取key值
21 if((key = ftok(MSG_FILE,'z')) < 0)
22 {
23 perror("ftok error");
24 exit(1);
25 }
26
27 // 打印key值
28 printf("Message Queue - Server key is: %d.\n", key);
29
30 // 创建消息队列
31 if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)
32 {
33 perror("msgget error");
34 exit(1);
35 }
36
37 // 打印消息队列ID及进程ID
38 printf("My msqid is: %d.\n", msqid);
39 printf("My pid is: %d.\n", getpid());
40
41 // 循环读取消息
42 for(;;)
43 {
44 msgrcv(msqid, &msg, 256, 888, 0);// 返回类型为888的第一个消息
45 printf("Server: receive msg.mtext is: %s.\n", msg.mtext);
46 printf("Server: receive msg.mtype is: %d.\n", msg.mtype);
47
48 msg.mtype = 999; // 客户端接收的消息类型
49 sprintf(msg.mtext, "hello, I'm server %d", getpid());
50 msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
51 }
52 return 0;
53 }
//msg_client.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/msg.h>
4
5 // 用于创建一个唯一的key
6 #define MSG_FILE "/etc/passwd"
7
8 // 消息结构
9 struct msg_form {
10 long mtype;
11 char mtext[256];
12 };
13
14 int main()
15 {
16 int msqid;
17 key_t key;
18 struct msg_form msg;
19
20 // 获取key值
21 if ((key = ftok(MSG_FILE, 'z')) < 0)
22 {
23 perror("ftok error");
24 exit(1);
25 }
26
27 // 打印key值
28 printf("Message Queue - Client key is: %d.\n", key);
29
30 // 打开消息队列
31 if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)
32 {
33 perror("msgget error");
34 exit(1);
35 }
36
37 // 打印消息队列ID及进程ID
38 printf("My msqid is: %d.\n", msqid);
39 printf("My pid is: %d.\n", getpid());
40
41 // 添加消息,类型为888
42 msg.mtype = 888;
43 sprintf(msg.mtext, "hello, I'm client %d", getpid());
44 msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
45
46 // 读取类型为777的消息
47 msgrcv(msqid, &msg, 256, 999, 0);
48 printf("Client: receive msg.mtext is: %s.\n", msg.mtext);
49 printf("Client: receive msg.mtype is: %d.\n", msg.mtype);
50 return 0;
51 }
1.4 信号量(semaphore)
信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。 它与已经介绍过的 IPC 结构不同,它是一个计数器。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。
它的特点如下:
- 信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。
- 信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。
- 每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。
- 支持信号量组。
最简单的信号量是只能取 0 和 1 的变量,这也是信号量最常见的一种形式,叫做二值信号量(Binary Semaphore)。而可以取多个正整数的信号量被称为通用信号量。 Linux 下的信号量函数都是在通用的信号量数组上进行操作,而不是在一个单一的二值信号量上进行操作。
1 #include <sys/sem.h>
2 // 创建或获取一个信号量组:若成功返回信号量集ID,失败返回-1
3 int semget(key_t key, int num_sems, int sem_flags);
4 // 对信号量组进行操作,改变信号量的值:成功返回0,失败返回-1
5 int semop(int semid, struct sembuf semoparray[], size_t numops);
6 // 控制信号量的相关信息
7 int semctl(int semid, int sem_num, int cmd, ...);
当semget创建新的信号量集合时,必须指定集合中信号量的个数(即num_sems),通常为1; 如果是引用一个现有的集合,则将num_sems指定为 0
在semop函数中,sembuf结构的定义如下:
1 struct sembuf
2 {
3 short sem_num; // 信号量组中对应的序号,0~sem_nums-1
4 short sem_op; // 信号量值在一次操作中的改变量
5 short sem_flg; // IPC_NOWAIT, SEM_UNDO
6 }
其中 sem_op 是一次操作中的信号量的改变量:
若sem_op > 0,表示进程释放相应的资源数,将 sem_op 的值加到信号量的值上。如果有进程正在休眠等待此信号量,则唤醒它们。
若sem_op < 0,请求 sem_op 的绝对值的资源,分为多种情况:
- 如果相应的资源数可以满足请求,则将该信号量的值减去sem_op的绝对值,函数成功返回。
- 当相应的资源数不能满足请求时,这个操作与sem_flg有关。
- sem_flg 指定IPC_NOWAIT,则semop函数出错返回EAGAIN。
- sem_flg 没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:
- 当相应的资源数可以满足请求,此信号量的semncnt值减1,该信号量的值减去sem_op的绝对值。成功返回;
- 此信号量被删除,函数smeop出错返回EIDRM;
- 进程捕捉到信号,并从信号处理函数返回,此情况下将此信号量的semncnt值减1,函数semop出错返回EINTR
若sem_op == 0,进程阻塞直到信号量的相应值为0。
- 当信号量已经为0,函数立即返回。
- 如果信号量的值不为0,则依据sem_flg决定函数动作:
- sem_flg指定IPC_NOWAIT,则出错返回EAGAIN。
- sem_flg没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:
- 信号量值为0,将信号量的semncnt的值减1,函数semop成功返回;
- 此信号量被删除,函数smeop出错返回EIDRM;
- 进程捕捉到信号,并从信号处理函数返回,在此情况将此信号量的semncnt值减1,函数semop出错返回EINTR
在semctl函数中的命令有多种,这里就说两个常用的:
- SETVAL:用于初始化信号量为一个已知的值。所需要的值作为联合semun的val成员来传递。在信号量第一次使用之前需要设置信号量。
- IPC_RMID:删除一个信号量集合。如果不删除信号量,它将继续在系统中存在,即使程序已经退出,它可能在你下次运行此程序时引发问题,而且信号量是一种有限的资源。
1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<sys/sem.h>
4
5 // 联合体,用于semctl初始化
6 union semun
7 {
8 int val; /*for SETVAL*/
9 struct semid_ds *buf;
10 unsigned short *array;
11 };
12
13 // 初始化信号量
14 int init_sem(int sem_id, int value)
15 {
16 union semun tmp;
17 tmp.val = value;
18 if(semctl(sem_id, 0, SETVAL, tmp) == -1)
19 {
20 perror("Init Semaphore Error");
21 return -1;
22 }
23 return 0;
24 }
25
26 // P操作:
27 // 若信号量值为1,获取资源并将信号量值-1
28 // 若信号量值为0,进程挂起等待
29 int sem_p(int sem_id)
30 {
31 struct sembuf sbuf;
32 sbuf.sem_num = 0; /*序号*/
33 sbuf.sem_op = -1; /*P操作*/
34 sbuf.sem_flg = SEM_UNDO;
35
36 if(semop(sem_id, &sbuf, 1) == -1)
37 {
38 perror("P operation Error");
39 return -1;
40 }
41 return 0;
42 }
43
44 // V操作:
45 // 释放资源并将信号量值+1
46 // 如果有进程正在挂起等待,则唤醒它们
47 int sem_v(int sem_id)
48 {
49 struct sembuf sbuf;
50 sbuf.sem_num = 0; /*序号*/
51 sbuf.sem_op = 1; /*V操作*/
52 sbuf.sem_flg = SEM_UNDO;
53
54 if(semop(sem_id, &sbuf, 1) == -1)
55 {
56 perror("V operation Error");
57 return -1;
58 }
59 return 0;
60 }
61
62 // 删除信号量集
63 int del_sem(int sem_id)
64 {
65 union semun tmp;
66 if(semctl(sem_id, 0, IPC_RMID, tmp) == -1)
67 {
68 perror("Delete Semaphore Error");
69 return -1;
70 }
71 return 0;
72 }
73
74
75 int main()
76 {
77 int sem_id; // 信号量集ID
78 key_t key;
79 pid_t pid;
80
81 // 获取key值
82 if((key = ftok(".", 'z')) < 0)
83 {
84 perror("ftok error");
85 exit(1);
86 }
87
88 // 创建信号量集,其中只有一个信号量
89 if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1)
90 {
91 perror("semget error");
92 exit(1);
93 }
94
95 // 初始化:初值设为0资源被占用
96 init_sem(sem_id, 0);
97
98 if((pid = fork()) == -1)
99 perror("Fork Error");
100 else if(pid == 0) /*子进程*/
101 {
102 sleep(2);
103 printf("Process child: pid=%d\n", getpid());
104 sem_v(sem_id); /*释放资源*/
105 }
106 else /*父进程*/
107 {
108 sem_p(sem_id); /*等待资源*/
109 printf("Process father: pid=%d\n", getpid());
110 sem_v(sem_id); /*释放资源*/
111 del_sem(sem_id); /*删除信号量集*/
112 }
113 return 0;
114 }
1.5 共享内存
使得多个进程可以访问同一块内存空间,是针对其他通信机制运行效率较低而设计的。 其特点如下:
- 共享内存是最快的一种 IPC,因为进程是直接对内存进行存取。
- 因为多个进程可以同时操作,所以需要进行同步。
- 信号量+共享内存通常结合在一起使用,信号量用来同步对共享内存的访问。
1 #include <sys/shm.h>
2 // 创建或获取一个共享内存:成功返回共享内存ID,失败返回-1
3 int shmget(key_t key, size_t size, int flag);
4 // 连接共享内存到当前进程的地址空间:成功返回指向共享内存的指针,失败返回-1
5 void *shmat(int shm_id, const void *addr, int flag);
6 // 断开与共享内存的连接:成功返回0,失败返回-1
7 int shmdt(void *addr);
8 // 控制共享内存的相关信息:成功返回0,失败返回-1
9 int shmctl(int shm_id, int cmd, struct shmid_ds *buf);
当用shmget函数创建一段共享内存时,必须指定其 size;而如果引用一个已存在的共享内存,则将 size 指定为0 。
当一段共享内存被创建以后,它并不能被任何进程访问。必须使用shmat函数连接该共享内存到当前进程的地址空间,连接成功后把共享内存区对象映射到调用进程的地址空间,随后可像本地空间一样访问。
shmdt函数是用来断开shmat建立的连接的。注意,这并不是从系统中删除该共享内存,只是当前进程不能再访问该共享内存而已。
shmctl函数可以对共享内存执行多种操作,根据参数 cmd 执行相应的操作。常用的是IPC_RMID(从系统中删除该共享内存)。
下面这个例子,使用了【共享内存+信号量+消息队列】的组合来实现服务器进程与客户进程间的通信。 共享内存用来传递数据; 信号量用来同步; 消息队列用来 在客户端修改了共享内存后 通知服务器读取。
//server.c
1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<sys/shm.h> // shared memory
4 #include<sys/sem.h> // semaphore
5 #include<sys/msg.h> // message queue
6 #include<string.h> // memcpy
7
8 // 消息队列结构
9 struct msg_form {
10 long mtype;
11 char mtext;
12 };
13
14 // 联合体,用于semctl初始化
15 union semun
16 {
17 int val; /*for SETVAL*/
18 struct semid_ds *buf;
19 unsigned short *array;
20 };
21
22 // 初始化信号量
23 int init_sem(int sem_id, int value)
24 {
25 union semun tmp;
26 tmp.val = value;
27 if(semctl(sem_id, 0, SETVAL, tmp) == -1)
28 {
29 perror("Init Semaphore Error");
30 return -1;
31 }
32 return 0;
33 }
34
35 // P操作:
36 // 若信号量值为1,获取资源并将信号量值-1
37 // 若信号量值为0,进程挂起等待
38 int sem_p(int sem_id)
39 {
40 struct sembuf sbuf;
41 sbuf.sem_num = 0; /*序号*/
42 sbuf.sem_op = -1; /*P操作*/
43 sbuf.sem_flg = SEM_UNDO;
44
45 if(semop(sem_id, &sbuf, 1) == -1)
46 {
47 perror("P operation Error");
48 return -1;
49 }
50 return 0;
51 }
52
53 // V操作:
54 // 释放资源并将信号量值+1
55 // 如果有进程正在挂起等待,则唤醒它们
56 int sem_v(int sem_id)
57 {
58 struct sembuf sbuf;
59 sbuf.sem_num = 0; /*序号*/
60 sbuf.sem_op = 1; /*V操作*/
61 sbuf.sem_flg = SEM_UNDO;
62
63 if(semop(sem_id, &sbuf, 1) == -1)
64 {
65 perror("V operation Error");
66 return -1;
67 }
68 return 0;
69 }
70
71 // 删除信号量集
72 int del_sem(int sem_id)
73 {
74 union semun tmp;
75 if(semctl(sem_id, 0, IPC_RMID, tmp) == -1)
76 {
77 perror("Delete Semaphore Error");
78 return -1;
79 }
80 return 0;
81 }
82
83 // 创建一个信号量集
84 int creat_sem(key_t key)
85 {
86 int sem_id;
87 if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1)
88 {
89 perror("semget error");
90 exit(-1);
91 }
92 init_sem(sem_id, 1); /*初值设为1资源未占用*/
93 return sem_id;
94 }
95
96
97 int main()
98 {
99 key_t key;
100 int shmid, semid, msqid;
101 char *shm;
102 char data[] = "this is server";
103 struct shmid_ds buf1; /*用于删除共享内存*/
104 struct msqid_ds buf2; /*用于删除消息队列*/
105 struct msg_form msg; /*消息队列用于通知对方更新了共享内存*/
106
107 // 获取key值
108 if((key = ftok(".", 'z')) < 0)
109 {
110 perror("ftok error");
111 exit(1);
112 }
113
114 // 创建共享内存
115 if((shmid = shmget(key, 1024, IPC_CREAT|0666)) == -1)
116 {
117 perror("Create Shared Memory Error");
118 exit(1);
119 }
120
121 // 连接共享内存
122 shm = (char*)shmat(shmid, 0, 0);
123 if((int)shm == -1)
124 {
125 perror("Attach Shared Memory Error");
126 exit(1);
127 }
128
129
130 // 创建消息队列
131 if ((msqid = msgget(key, IPC_CREAT|0777)) == -1)
132 {
133 perror("msgget error");
134 exit(1);
135 }
136
137 // 创建信号量
138 semid = creat_sem(key);
139
140 // 读数据
141 while(1)
142 {
143 msgrcv(msqid, &msg, 1, 888, 0); /*读取类型为888的消息*/
144 if(msg.mtext == 'q') /*quit - 跳出循环*/
145 break;
146 if(msg.mtext == 'r') /*read - 读共享内存*/
147 {
148 sem_p(semid);
149 printf("%s\n",shm);
150 sem_v(semid);
151 }
152 }
153
154 // 断开连接
155 shmdt(shm);
156
157 /*删除共享内存、消息队列、信号量*/
158 shmctl(shmid, IPC_RMID, &buf1);
159 msgctl(msqid, IPC_RMID, &buf2);
160 del_sem(semid);
161 return 0;
162 }
//client.c
1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<sys/shm.h> // shared memory
4 #include<sys/sem.h> // semaphore
5 #include<sys/msg.h> // message queue
6 #include<string.h> // memcpy
7
8 // 消息队列结构
9 struct msg_form {
10 long mtype;
11 char mtext;
12 };
13
14 // 联合体,用于semctl初始化
15 union semun
16 {
17 int val; /*for SETVAL*/
18 struct semid_ds *buf;
19 unsigned short *array;
20 };
21
22 // P操作:
23 // 若信号量值为1,获取资源并将信号量值-1
24 // 若信号量值为0,进程挂起等待
25 int sem_p(int sem_id)
26 {
27 struct sembuf sbuf;
28 sbuf.sem_num = 0; /*序号*/
29 sbuf.sem_op = -1; /*P操作*/
30 sbuf.sem_flg = SEM_UNDO;
31
32 if(semop(sem_id, &sbuf, 1) == -1)
33 {
34 perror("P operation Error");
35 return -1;
36 }
37 return 0;
38 }
39
40 // V操作:
41 // 释放资源并将信号量值+1
42 // 如果有进程正在挂起等待,则唤醒它们
43 int sem_v(int sem_id)
44 {
45 struct sembuf sbuf;
46 sbuf.sem_num = 0; /*序号*/
47 sbuf.sem_op = 1; /*V操作*/
48 sbuf.sem_flg = SEM_UNDO;
49
50 if(semop(sem_id, &sbuf, 1) == -1)
51 {
52 perror("V operation Error");
53 return -1;
54 }
55 return 0;
56 }
57
58
59 int main()
60 {
61 key_t key;
62 int shmid, semid, msqid;
63 char *shm;
64 struct msg_form msg;
65 int flag = 1; /*while循环条件*/
66
67 // 获取key值
68 if((key = ftok(".", 'z')) < 0)
69 {
70 perror("ftok error");
71 exit(1);
72 }
73
74 // 获取共享内存
75 if((shmid = shmget(key, 1024, 0)) == -1)
76 {
77 perror("shmget error");
78 exit(1);
79 }
80
81 // 连接共享内存
82 shm = (char*)shmat(shmid, 0, 0);
83 if((int)shm == -1)
84 {
85 perror("Attach Shared Memory Error");
86 exit(1);
87 }
88
89 // 创建消息队列
90 if ((msqid = msgget(key, 0)) == -1)
91 {
92 perror("msgget error");
93 exit(1);
94 }
95
96 // 获取信号量
97 if((semid = semget(key, 0, 0)) == -1)
98 {
99 perror("semget error");
100 exit(1);
101 }
102
103 // 写数据
104 printf("***************************************\n");
105 printf("* IPC *\n");
106 printf("* Input r to send data to server. *\n");
107 printf("* Input q to quit. *\n");
108 printf("***************************************\n");
109
110 while(flag)
111 {
112 char c;
113 printf("Please input command: ");
114 scanf("%c", &c);
115 switch(c)
116 {
117 case 'r':
118 printf("Data to send: ");
119 sem_p(semid); /*访问资源*/
120 scanf("%s", shm);
121 sem_v(semid); /*释放资源*/
122 /*清空标准输入缓冲区*/
123 while((c=getchar())!='\n' && c!=EOF);
124 msg.mtype = 888;
125 msg.mtext = 'r'; /*发送消息通知服务器读数据*/
126 msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
127 break;
128 case 'q':
129 msg.mtype = 888;
130 msg.mtext = 'q';
131 msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
132 flag = 0;
133 break;
134 default:
135 printf("Wrong input!\n");
136 /*清空标准输入缓冲区*/
137 while((c=getchar())!='\n' && c!=EOF);
138 }
139 }
140
141 // 断开连接
142 shmdt(shm);
143
144 return 0;
145 }
1.6 socket
套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。 socket是应用层与传输层的中间软件抽象层,它是一组接口,把复杂的TCP/IP协议族隐藏在socket接口后面,一组简单的接口就是全部,让socket去组织数据,以符合指定的协议。

1.6.1 TCP socket


//server.c
1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<sys/types.h>
4 #include<unistd.h>
5 #include<sys/socket.h>
6 #include<netinet/in.h>
7 #include<arpa/inet.h>
8 #include<string.h>
9 #include<errno.h>
10 #include<sys/un.h>
11 #include<stdio.h>
12
13 #define N 64
14
15 int main(int argc, const char *argv[])
16 {
17 int sockfd, connectfd;
18 char buf[N];
19 struct sockaddr_un serveraddr, clientaddr;
20 socklen_t len = sizeof(clientaddr);
21
22 sockfd = socket(AF_UNIX, SOCK_STREAM, 0);
23 if(sockfd < 0)
24 {
25 perror("fail to socket");
26 return -1;
27 }
28
29 serveraddr.sun_family = AF_UNIX;
30 strcpy(serveraddr.sun_path, "mysocket");
31
32 if(bind(sockfd, (struct sockaddr*)&serveraddr, sizeof(serveraddr)) < 0)
33 {
34 perror("fail to bind");
35 return -1;
36 }
37
38 if(listen(sockfd, 5) < 0)
39 {
40 perror("fail to listen");
41 return -1;
42 }
43
44 if((connectfd = accept(sockfd, (struct sockaddr*)&clientaddr, &len)) < 0)
45 {
46 perror("fail to accept");
47 return -1;
48 }
49
50 while(1)
51 {
52 if(recv(connectfd, buf, N, 0) < 0)
53 {
54 perror("fail to recv");
55 return -1;
56 }
57 if(strncmp(buf, "quit", 4) == 0)
58 {
59 break;
60 }
61 buf[strlen(buf) - 1] = '\0';
62 printf("buf:%s\n", buf);
63 strcat(buf, "+++***---");
64 if(send(connectfd, buf, N, 0) < 0)
65 {
66 perror("fail to send");
67 return -1;
68 }
69 }
70 close(sockfd);
71 return 0;
72 }
//client.c
1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<sys/types.h>
4 #include<unistd.h>
5 #include<sys/socket.h>
6 #include<arpa/inet.h>
7 #include<netinet/in.h>
8 #include<string.h>
9 #include<sys/un.h>
10
11 #define N 64
12
13 int main(int argc, const char *argv[])
14 {
15 int sockfd;
16 struct sockaddr_un serveraddr;
17 char buf[N];
18
19 sockfd = socket(AF_UNIX, SOCK_STREAM, 0);
20 if(sockfd < 0)
21 {
22 perror("fail to sockfd");
23 return -1;
24 }
25
26 serveraddr.sun_family = AF_UNIX;
27 strcpy(serveraddr.sun_path, "mysocket");
28
29 if(connect(sockfd, (struct sockaddr*)&serveraddr, sizeof(serveraddr)) < 0)
30 {
31 perror("fail to connect");
32 return -1;
33 }
34
35 while(1)
36 {
37 printf("<client>");
38 fgets(buf, N, stdin);
39 if(send(sockfd, buf, N, 0) < 0)
40 {
41 perror("fail to send");
42 return -1;
43 }
44 if(strncmp(buf, "quit", 4) == 0)
45 {
46 break;
47 }
48 if(recv(sockfd, buf, N, 0) < 0)
49 {
50 perror("fail to recv");
51 return -1;
52 }
53 printf("buf:%s\n", buf);
54 }
55 close(sockfd);
56 return 0;
57 }
1.6.2 UDP socket

//udpserver.cpp
#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <sys/un.h>
#include <iostream>
#include <unistd.h>
using namespace std;
char* server_file = "server.sock";
int main(int argc,char** argv)
{
int fd = socket(AF_UNIX,SOCK_DGRAM,0);
if (fd < 0)
{
perror("socket");
return -1;
}
struct sockaddr_un addr;
memset(&addr,0,sizeof(addr));
addr.sun_family = AF_UNIX;
strcpy(addr.sun_path,server_file);
if (access(addr.sun_path,0) != -1)
{
remove(addr.sun_path);
}
if(bind(fd,(sockaddr*)&addr,sizeof(addr)) < 0)
{
perror("bind");
return -1;
}
struct sockaddr_un clientaddr;
socklen_t len = sizeof(clientaddr);
char msgrecv[1024];
while (1)
{
memset(msgrecv,'\0',1024);
int size = recvfrom(fd,msgrecv,sizeof(msgrecv),0,(sockaddr*)&clientaddr,&len);
if (size < 0)
{
perror("recv");
return -1;
}
cout << "I'm server,receive a msg: " << msgrecv << " from: " << clientaddr.sun_path << endl;
if (strncmp("quit",msgrecv,4) == 0)
{
cout << "Server is exiting!" << endl;
break;
}
char *p = "OK,I got id!";
int ssize = sendto(fd,p,strlen(p),0,(sockaddr*)&clientaddr,len);
if (ssize < 0)
{
perror("sendto");
return -1;
}
sleep(1);
}
if (close(fd) < 0)
{
perror("close");
return -1;
}
return 0;
}
//udpclient.cpp
#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <sys/un.h>
#include <iostream>
#include <unistd.h>
using namespace std;
char* server_file = "server.sock";
char* client_file = "client.sock";
int main(int argc,char** argv)
{
int fd = socket(AF_UNIX,SOCK_DGRAM,0);
if (fd < 0)
{
perror("socket");
return -1;
}
struct sockaddr_un addr;
memset(&addr,0,sizeof(addr));
addr.sun_family = AF_UNIX;
strcpy(addr.sun_path,client_file);
if (access(addr.sun_path,0) != -1)
{
remove(addr.sun_path);
}
if(bind(fd,(sockaddr*)&addr,sizeof(addr)) < 0)
{
perror("bind");
return -1;
}
struct sockaddr_un clientaddr;
socklen_t len = sizeof(clientaddr);
char msgrecv[1024];
struct sockaddr_un serveraddr;
memset(&serveraddr,0,sizeof(serveraddr));
serveraddr.sun_family = AF_UNIX;
strcpy(serveraddr.sun_path,server_file);
char *p = "Hello,how are you?";
int ssize = sendto(fd,p,strlen(p),0,(sockaddr*)&serveraddr,len);
if (ssize < 0)
{
perror("sendto");
return -1;
}
int size = recvfrom(fd,msgrecv,sizeof(msgrecv),0,(sockaddr*)&serveraddr,&len);
if (size < 0)
{
perror("recv");
return -1;
}
cout << "I'm client,receive a msg :" << msgrecv << endl;
sleep(2);
char* goodbye = "quit";
if (sendto(fd,goodbye,strlen(goodbye),0,(sockaddr*)&serveraddr,len) < 0)
{
perror("sendto");
return -1;
}
if (close(fd) < 0)
{
perror("close");
return -1;
}
return 0;
}
2 线程间通信
线程间的通信目的主要是用于线程同步,所以线程没有像进程通信中的用于数据交换的通信机制。
多线程的进程地址空间:

线程安全:
所在的进程中有多个线程在同时运行,而这些线程可能会同时访问某一段代码。如果每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。线程安全就是说多线程访问同一段代码不会产生不确定的结果。编写线程安全的代码依靠线程同步。
线程之间通信的两个基本问题是 互斥和同步。
线程同步是指线程之间所具有的一种制约关系,一个线程的执行依赖另一个线程的消息,当它没有得到另一个线程的消息时应等待,直到消息到达时才被唤醒。
线程互斥是指对于共享的操作系统资源(指的是广义的”资源”,而不是Windows的.res文件,譬如全局变量就是一种共享资源),在各线程访问时的排它性。当有若干个线程都要使用某一共享资源时,任何时刻最多只允许一个线程去使用,其它要使用该资源的线程必须等待,直到占用资源者释放该资源。
线程间通信方式主要以下几种:
2.1 锁机制
包括互斥锁、条件变量、读写锁和自旋锁。
2.1.1 互斥锁
确保同一时间只能有一个线程访问共享资源。当锁被占用时试图对其加锁的线程都进入阻塞状态(释放CPU资源使其由运行状态进入等待状态)。当锁释放时哪个等待线程能获得该锁取决于内核的调度。
互斥量本质上说是一把锁,在访问共享资源前对互斥量进行加锁,在访问完成后释放互斥量。对互斥量进行枷锁以后,其他试图再次对互斥量加锁的线程都会被阻塞直到当前线程释放该互斥锁。如果释放互斥量时有一个以上的线程阻塞,那么所有该锁上的阻塞线程都会变成可运行状态,第一个变成运行状态的线程可以对互斥量加锁,其他线程就会看到互斥量依然是锁着,只能再次阻塞等待它重新变成可用,这样,一次只有一个线程可以向前执行。
互斥量的死锁:
一个线程需要访问两个或者更多不同的共享资源,而每个资源又有不同的互斥量管理。当超过一个线程加锁同一组互斥量时,就可能发生死锁。死锁就是指多个线程/进程因竞争资源而造成的一种僵局(相互等待),若无外力作用,这些进程都将无法向前推进。
死锁的处理策略:
1、预防死锁:破坏死锁产生的四个条件:互斥条件、不剥夺条件、请求和保持条件以及循环等待条件。
2、避免死锁:在每次进行资源分配前,应该计算此次分配资源的安全性,如果此次资源分配不会导致系统进入不安全状态,那么将资源分配给进程,否则等待。算法:银行家算法。
3、检测死锁:检测到死锁后通过资源剥夺、撤销进程、进程回退等方法解除死锁。
#include<mutex>
#include<thread>
using namespace std;
mutex m;
void threadFunc(int i)
{
m.lock();
//在这里写上你需要的代码
m.unlock();
}
int main()
{
thread t1(threadFunc,1);
thread t2(threadFunc,2);
t1.join();
t2.join();
return 0;
}
2.1.2 读写锁
当以写模式加锁而处于写状态时任何试图加锁的线程(不论是读或写)都阻塞,当以读状态模式加锁而处于读状态时“读”线程不阻塞,“写”线程阻塞。读模式共享,写模式互斥。
2.1.3 条件变量
可以以原子的方式阻塞线程,直到某个特定条件为真为止。对条件的测试是在互斥锁的保护下进行的。条件变量始终与互斥锁一起使用。
2.1.4 自旋锁
上锁受阻时线程不阻塞而是在循环中轮询查看能否获得该锁,没有线程的切换因而没有切换开销,不过对CPU的霸占会导致CPU资源的浪费。 所以自旋锁适用于并行结构(多个处理器)或者适用于锁被持有时间短而不希望在线程切换产生开销的情况。
2.2 信号量机制(Semaphore)
类似进程间的信号量处理。
2.3 信号机制(Signal)
类似进程间的信号处理。