Android Handler 机制

490 阅读5分钟

Android中个UI控件是非线程安全的, 当在子线程中进行UI更新时会强制抛出异常, 当需要更新UI时通常会借助handler发送一个Message然后再handler的handMessage方法中进行处理

Handler

构造方法

Handler的所有构造方法最终会调用下面的构造方法, 从ThreadLocal中获取Looper对象, Looper对象是通过调用Looper.prepare()方法来创建并保存的, 可以看到如果没有调用该方法创建Handler会抛出异常信息

public Handler(@Nullable Callback callback, boolean async) {
    if (FIND_POTENTIAL_LEAKS) {
        final Class<? extends Handler> klass = getClass();
        if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                (klass.getModifiers() & Modifier.STATIC) == 0) {
            Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                klass.getCanonicalName());
        }
    }

    // 通过ThreadLocal取出和本线程相关的Looper
    mLooper = Looper.myLooper();
    if (mLooper == null) {
        throw new RuntimeException(
            "Can't create handler inside thread " + Thread.currentThread()
                    + " that has not called Looper.prepare()");
    }
    // MessageQueue为Looper中的MessageQueue
    mQueue = mLooper.mQueue;
    mCallback = callback;
    mAsynchronous = async;
}

dispatchMessage方法

public void dispatchMessage(@NonNull Message msg) {
    // message对象有callback
    if (msg.callback != null) {
        handleCallback(msg);
    } else {
        // hander对象有callback
        if (mCallback != null) {
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        handleMessage(msg);
    }
}

sendMessageAtTime

多种通过handler发送消息的方法最终会调用handler的sendMessageAtTime方法, 可以看到最终是通过调用MessageQueue对应的enqueueMessage方法将消息加入队列

public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue; // handler内部维护的MessageQueue引用
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis); // 调用enqueueMessage方法将消息插入MessageQueue中
}

private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
        long uptimeMillis) {
    msg.target = this; // handler对象(消息由谁来处理)
    msg.workSourceUid = ThreadLocalWorkSource.getUid();

    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis); // 通过调用MessageQueue的enqueueMessage完成消息入队
}

Message

target属性

和该Message相关的Handler对象, 该Message最终谁来处理

Looper

主线程在启动的时候回调用Looper.prepare()方法创建一个Looper并通过ThreadLocal进行保存, 并调用Looper.loop()方法进入一个消息循环中(ActivityThread类)

Looper.prepare()方法

创建Looper对象并保存到ThreadLocal

public static void prepare() {
    prepare(true);
}
// 通过ThreadLocal来取, 取不到则new一个Looper通过ThreadLocal保存
private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper(quitAllowed));
}

Looper的构造方法

构造方法会创建一个MessageQueue

private Looper(boolean quitAllowed) {
    mQueue = new MessageQueue(quitAllowed);
    mThread = Thread.currentThread();
}

Looper.loop() 方法(核心代码)

public static void loop() {
    // 获取本线程的Looper对象
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    // 获取Looper对应的MessageQueue对象
    final MessageQueue queue = me.mQueue;

    // 消息循环
    for (;;) {
        // 从MessageQueue中获取一条消息
        Message msg = queue.next(); // might block
        if (msg == null) {
            return;
        }
        
        try {
            // 将消息分发给对应的Handler进行处理
            msg.target.dispatchMessage(msg);
        } catch (Exception exception) {

        } finally {

        }
    }
}

MessageQueue

消息队列, 单向链表, 通过enqueueMessage方法将Message入队, 通过next方法从队列中获取一个Message, next方法可能会阻塞, 需要在enqueueMessage方法中进行唤醒

enqueueMessage方法

boolean enqueueMessage(Message msg, long when) {
    // target属性为null抛出异常
    if (msg.target == null) {
        throw new IllegalArgumentException("Message must have a target.");
    }
    if (msg.isInUse()) {
        throw new IllegalStateException(msg + " This message is already in use.");
    }
    synchronized (this) {
        if (mQuitting) {
            IllegalStateException e = new IllegalStateException(
                    msg.target + " sending message to a Handler on a dead thread");
            Log.w(TAG, e.getMessage(), e);
            msg.recycle();
            return false;
        }
        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        // 是否需要唤醒
        boolean needWake;
        // 消息队列为空、消息需要立即执行、消息的执行时间比队头消息还早
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            // 插入队列头部
            msg.next = p;
            mMessages = msg;
            // 是否是要唤醒看现在是否阻塞
            needWake = mBlocked;
        } else {
            // 翻译: 插入队列的中间部分, 通常不需要唤醒, 除非在队列的头部有一个barrier
            // Inserted within the middle of the queue.  Usually we don't have to wake
            // up the event queue unless there is a barrier at the head of the queue
            // and the message is the earliest asynchronous message in the queue.
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            // 插入队列的时候就按着延迟时间进行了排序
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }
        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
        	// 唤醒
            nativeWake(mPtr);
        }
    }
    return true;
}

同步屏障

taget为null的Message, 利用postSyncBarrier方法插入。当 MessageQueue 中遇到了一个同步屏障,则它会忽略后面的同步消息直到遇到一个异步的消息,这样设计是为了当队列中遇到同步屏障时,优先执行异步消息。

next方法

Message next() {
    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) {
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }

        nativePollOnce(ptr, nextPollTimeoutMillis);

        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            // 发现一个栅栏, 跳过接下来的Message直到一个异步的Message
            if (msg != null && msg.target == null) {
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) {
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                    msg.markInUse();
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }

            // Process the quit message now that all pending messages have been handled.
            if (mQuitting) {
                dispose();
                return null;
            }

            // If first time idle, then get the number of idlers to run.
            // Idle handles only run if the queue is empty or if the first message
            // in the queue (possibly a barrier) is due to be handled in the future.
            if (pendingIdleHandlerCount < 0
                    && (mMessages == null || now < mMessages.when)) {
                pendingIdleHandlerCount = mIdleHandlers.size();
            }
            if (pendingIdleHandlerCount <= 0) {
                // No idle handlers to run.  Loop and wait some more.
                mBlocked = true;
                continue;
            }

            if (mPendingIdleHandlers == null) {
                mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
            }
            mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
        }

        // Run the idle handlers.
        // We only ever reach this code block during the first iteration.
        for (int i = 0; i < pendingIdleHandlerCount; i++) {
            final IdleHandler idler = mPendingIdleHandlers[i];
            mPendingIdleHandlers[i] = null; // release the reference to the handler

            boolean keep = false;
            try {
                keep = idler.queueIdle();
            } catch (Throwable t) {
                Log.wtf(TAG, "IdleHandler threw exception", t);
            }

            if (!keep) {
                synchronized (this) {
                    mIdleHandlers.remove(idler);
                }
            }
        }

        // Reset the idle handler count to 0 so we do not run them again.
        pendingIdleHandlerCount = 0;

        // While calling an idle handler, a new message could have been delivered
        // so go back and look again for a pending message without waiting.
        nextPollTimeoutMillis = 0;
    }
}

阻塞唤醒机制

主线程在Looper.loop()死循环中运行, 当没有消息需要处理的时候回占用cpu资源, 这时候需要将其阻塞, 底层使用linux epoll实现, 在next中进行阻塞, 当子线程通过handler向MessageQueue中插入消息时会判断是否需要唤醒主线程