完整代码如下: name.csv 需要自己采集数据import tensorflow as tf
name_dataset = './name.csv' train_x = [] train_y = [] with open(name_dataset, 'r',encoding='UTF-8') as f: first_line = True for line in f: if first_line is True: first_line = False continue sample = line.strip().split(',') if len(sample) == 2: train_x.append(sample[0]) if sample[1] == '男': train_y.append([0, 1]) # 男 else: train_y.append([1, 0]) # 女
max_name_length = max([len(name) for name in train_x]) # print("最长名字的字符数: ", max_name_length) max_name_length = 8 counter = 0 vocabulary = {} for name in train_x: counter += 1 tokens = [word for word in name] for word in tokens: if word in vocabulary: vocabulary[word] += 1 else: vocabulary[word] = 1
vocabulary_list = [' '] + sorted(vocabulary, key=vocabulary.get, reverse=True) # print(len(vocabulary_list))
# 字符串转为向量形式 vocab = dict([(x, y) for (y, x) in enumerate(vocabulary_list)]) train_x_vec = [] for name in train_x: name_vec = [] for word in name: name_vec.append(vocab.get(word)) while len(name_vec) < max_name_length: name_vec.append(0) train_x_vec.append(name_vec)
input_size = max_name_length num_classes = 2
batch_size = 64 num_batch = len(train_x_vec) // batch_size
X = tf.placeholder(tf.int32, [None, input_size]) Y = tf.placeholder(tf.float32, [None, num_classes])
dropout_keep_prob = tf.placeholder(tf.float32)
def neural_network(vocabulary_size, embedding_size=128, num_filters=128): # embedding layer with tf.device('/cpu:0'), tf.name_scope("embedding"): W = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embedded_chars = tf.nn.embedding_lookup(W, X) embedded_chars_expanded = tf.expand_dims(embedded_chars, -1) # convolution + maxpool layer filter_sizes = [3, 4, 5] pooled_outputs = [] for i, filter_size in enumerate(filter_sizes): with tf.name_scope("conv-maxpool-%s" % filter_size): filter_shape = [filter_size, embedding_size, 1, num_filters] W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1)) b = tf.Variable(tf.constant(0.1, shape=[num_filters])) conv = tf.nn.conv2d(embedded_chars_expanded, W, strides=[1, 1, 1, 1], padding="VALID") h = tf.nn.relu(tf.nn.bias_add(conv, b)) pooled = tf.nn.max_pool(h, ksize=[1, input_size - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding='VALID') pooled_outputs.append(pooled)
num_filters_total = num_filters * len(filter_sizes) h_pool = tf.concat(pooled_outputs, 3) h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total]) # dropout with tf.name_scope("dropout"): h_drop = tf.nn.dropout(h_pool_flat, dropout_keep_prob) # output with tf.name_scope("output"): W = tf.get_variable("W", shape=[num_filters_total, num_classes], initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.constant(0.1, shape=[num_classes])) output = tf.nn.xw_plus_b(h_drop, W, b)
return output
# 训练 def train_neural_network(): output = neural_network(len(vocabulary_list))
optimizer = tf.train.AdamOptimizer(1e-3) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=Y)) grads_and_vars = optimizer.compute_gradients(loss) train_op = optimizer.apply_gradients(grads_and_vars)
saver = tf.train.Saver(tf.global_variables()) with tf.Session() as sess: sess.run(tf.global_variables_initializer())
for e in range(1): # 201 for i in range(num_batch): batch_x = train_x_vec[i * batch_size: (i + 1) * batch_size] batch_y = train_y[i * batch_size: (i + 1) * batch_size] _, loss_ = sess.run([train_op, loss], feed_dict={X: batch_x, Y: batch_y, dropout_keep_prob: 0.5}) print(e, i, loss_) # 保存模型 if e % 50 == 0: saver.save(sess, './name2sex.model', global_step=e)
# 测试 def detect_sex(name_list): x = [] for name in name_list: name_vec = [] for word in name: name_vec.append(vocab.get(word)) while len(name_vec) < max_name_length: name_vec.append(0) x.append(name_vec)
output = neural_network(len(vocabulary_list))
saver = tf.train.Saver(tf.global_variables()) with tf.Session() as sess: # 恢复前一次训练 ckpt = tf.train.get_checkpoint_state('./') if ckpt != None: print(ckpt.model_checkpoint_path) saver.restore(sess, ckpt.model_checkpoint_path) print('已加载模型...') else: print("没找到模型")
predictions = tf.argmax(output, 1) res = sess.run(predictions, {X: x, dropout_keep_prob: 1.0})
i = 0 for name in name_list: print(name, '女' if res[i] == 0 else '男') i += 1
# 训练开关 # train_neural_network() detect_sex(["你哥", "你妹", "董明珠", "雷布斯"]) 更多Java学习资料可关注:itheimaGZ获取 |
|