LeetCode Unique Paths(062)解法总结

300 阅读2分钟

描述

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 7 x 3 grid. How many possible unique paths are there?

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28

Constraints:

1 <= m, n <= 100
It's guaranteed that the answer will be less than or equal to 2 * 10 ^ 9.

思路

知乎上学到了动态规划的基本知识,就找了这道题作为练习巩固。

此题以棋盘为dp数组的形象描述,有助于初学者进行理解。

  • 除第一行及第一列的格子只有一种到达方式外,其他的格子需要从左边/上边的格子读取上一个状态,并将这两个状态相加,得到最右下角的路径数。

关系式是 dp[i][j] = dp[i-1][j] + dp[i][j-1]

class Solution {
    public int uniquePaths(int m, int n) {
        int dp[][] = new int[m][n];
        for(int i = 0; i<n; i++){
            dp[0][i] = 1;
        }
        for(int i = 0; i<m; i++){
            dp[i][0] = 1;
        }
        for(int i = 1; i<m; i++){
            for(int j = 1; j<n; j++){
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
}
Runtime: 0 ms, faster than 100.00% of Java online submissions for Unique Paths.
Memory Usage: 36.6 MB, less than 5.10% of Java online submissions for Unique Paths.

优化

可以看到空间利用率还是比较低的,可以对其进行优化

参照原作者给出的思路(图源见水印,下同):

这是矩阵初始化的时候(下图)

根据上一行的数值及第一列的数值(恒为1)计算第二行(下图)


计算过程(下图*3)




可以观察到,第i行j列的数据生成之后,第i-1行j列的数据就可以不用保存了。即满足关系式dp[i] = dp[i-1] + dp[i]。照此推理过程不难推出最后一行的情况(下图)

右下角即为所求。

class Solution {
    public int uniquePaths(int m, int n) {
        int dp[] = new int[n];
        for(int i = 0; i<m; i++){
            dp[0] = 1;
            for(int j = 1; j<n; j++){
                dp[j] = dp[j-1] + dp[j];
            }
        }
        return dp[n-1];
    }
}
Runtime: 0 ms, faster than 100.00% of Java online submissions for Unique Paths.
Memory Usage: 36.5 MB, less than 5.10% of Java online submissions for Unique Paths.

数学优化(来自LeetCode题目评论区)

The total number of movements of the robot is S=m+n-2, and the number of downward movements is D=m-1. Then the problem can be seen as the number of combinations of D positions taken from S. The solution to this problem is C(S, D).

class Solution(object):
    def uniquePaths(self, m, n):
        """
        :type m: int
        :type n: int
        :rtype: int
        """
        return math.factorial(m+n-2)/math.factorial(m-1)/math.factorial(n-1)

使用数学组合方法进行计算,空间复杂度O(1)