思路:
思路个屁啊,这就是简单的01背包模板啊混蛋,照着模板抄都能做出来
最核心的代码就三行
for(int i=0;i<n;i++)// 外层循环骨头的个数
for(int j=tot;j>=w[i];j--)//tot:背包总大小,w[i],这个骨头的重量
dp[j] = max(dp[j],dp[j-w[i]]+v[i]);// 就是选这个,还是不选这个,
最后dp[tot]就是所求的最大值
说到01背包了,还有几个变种
-
多个属性的01背包
不只是只有weight和value,可能还有其他的属性,参考 NASA的食物计划
解法也很简单,多了一个限制条件,那么我们dp数组变成二维,然后多一重循环就好了
// 作者: 龘龘龘龘龘龘 #include<iostream> using namespace std; int a[51],b[51],c[51];//题目中有三个变量就设三个变量; int f[501][501]; int main() { int i,j,l,m,n,k; cin>>m>>n>>k;//输入 for(i=1;i<=k;i++) cin>>a[i]>>b[i]>>c[i];//表示每个食品的体积质量和卡路里; for(i=1;i<=n;i++) for(j=m;j>=a[i];j--) for(l=n;l>=b[i];l--)//记住j和l不能同时写在一起,刚开始我就写在一起,调了1分钟才发现 f[j][l]=max(f[j][l],f[j-a[i]][l-b[i]]+c[i]);//公式;直接套用就是的 cout<<f[m][n];//输出最优解 return 0; }
-
我记得还有一个叫做分组背包的,但是目前还没写过这种题,先不管了
本题注水代码
ps: dp数组一定要初始化,一定要初始化,一定要初始化,md,坑死我了
#include<iostream>
#include<algorithm>
typedef long long LL;
using namespace std;
LL w[10000+10],v[10000+10],dp[10000+10];
int n,tot;
/*
有限背包
水水水
*/
int main(){
// freopen("data.in","r",stdin);
int t;
cin>>t;
while(t--){
cin>>n>>tot;
for(int i=0;i<=tot;i++)
dp[i] = 0;
for(int i=1;i<=n;i++)
cin>>v[i];
for(int i=1;i<=n;i++)
cin>>w[i];
for(int i=1;i<=n;i++){
for(int j=tot;j>=w[i];j--){
dp[j] = max(dp[j],dp[j-w[i]]+v[i]);
}
}
cout<<dp[tot]<<endl;
}
return 0;
}
题面:
Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave … The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?

Input
The first line contain a integer T , the number of cases. Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
Output
One integer per line representing the maximum of the total value (this number will be less than 2 31).
Sample Input
1
5 10
1 2 3 4 5
5 4 3 2 1
Sample Output
14