1.赋值运算符函数
对于数组:
const Stack & Stack::operator(const Stack & rightHandSide
{
if(this != &rightHandSide)
{
delete[] myArray;
myCapacity=rightHandSide.myCapacity;
myArray=new StackElement[myCapacity];
if (myArray ==0)
{
cerr<<"Indequate memory";
exit(1);
}
}
myTop=rightHandSide.myTop;
for (int pos=0; pos<=myTop;pos++)
{
myArray[pos]=rightHandSide.myArray[pos];
}
return *this;
}
对于字符串:
CMyString& CMyString::operator = (const CMyString& str)
{
if(this == &str)
return *this;
delete []m_pData;
m_pData = nullptr;
m_pData = new char[strlen(str.m_pData) + 1];
strcpy(m_pData, str.m_pData);
return *this;
}
2.数组中重复的数字
bool duplicate(int numbers[], int length, int* duplication)
{
if(numbers == nullptr || length <= 0)
return false;
for(int i = 0; i < length; ++i)
{
if(numbers[i] < 0 || numbers[i] > length - 1)
return false;
}
for(int i = 0; i < length; ++i)
{
while(numbers[i] != i)
{
if(numbers[i] == numbers[numbers[i]])
{
*duplication = numbers[i];
return true;
}
// 交换numbers[i]和numbers[numbers[i]]
int temp = numbers[i];
numbers[i] = numbers[temp];
numbers[temp] = temp;
}
}
return false;
}
- 不修改数组找出重复的数字
int getDuplication(const int* numbers, int length)
{
if(numbers == nullptr || length <= 0)
return -1;
int start = 1;
int end = length - 1;
while(end >= start)
{
int middle = ((end - start) >> 1) + start;
int count = countRange(numbers, length, start, middle);
if(end == start)
{
if(count > 1)
return start;
else
break;
}
if(count > (middle - start + 1))
end = middle;
else
start = middle + 1;
}
return -1;
}
int countRange(const int* numbers, int length, int start, int end)
{
if(numbers == nullptr)
return 0;
int count = 0;
for(int i = 0; i < length; i++)
if(numbers[i] >= start && numbers[i] <= end)
++count;
return count;
}
- 二维数组的查找 一维数组模型
bool Find(int* matrix, int rows, int columns, int number)
{
bool found = false;
if(matrix != nullptr && rows > 0 && columns > 0)
{
int row = 0;
int column = columns - 1;
while(row < rows && column >=0)
{
if(matrix[row * columns + column] == number)
{
found = true;
break;
}
else if(matrix[row * columns + column] > number)
-- column;
else
++ row;
}
}
return found;
}
5.替换空格 从后往前复制
void ReplaceBlank(char str[], int length)
{
if(str == nullptr && length <= 0)
return;
/*originalLength 为字符串str的实际长度*/
int originalLength = 0;
int numberOfBlank = 0;
int i = 0;
while(str[i] != '\0')
{
++ originalLength;
if(str[i] == ' ')
++ numberOfBlank;
++ i;
}
/*newLength 为把空格替换成'%20'之后的长度*/
int newLength = originalLength + numberOfBlank * 2;
if(newLength > length)
return;
int indexOfOriginal = originalLength;
int indexOfNew = newLength;
while(indexOfOriginal >= 0 && indexOfNew > indexOfOriginal)
{
if(str[indexOfOriginal] == ' ')
{
str[indexOfNew --] = '0';
str[indexOfNew --] = '2';
str[indexOfNew --] = '%';
}
else
{
str[indexOfNew --] = str[indexOfOriginal];
}
-- indexOfOriginal;
}
}
6.重建二叉树
BinaryTreeNode* Construct(int* preorder, int* inorder, int length)
{
if(preorder == nullptr || inorder == nullptr || length <= 0)
return nullptr;
return ConstructCore(preorder, preorder + length - 1,
inorder, inorder + length - 1);
}
BinaryTreeNode* ConstructCore
(
int* startPreorder, int* endPreorder,
int* startInorder, int* endInorder
)
{
// 前序遍历序列的第一个数字是根结点的值
int rootValue = startPreorder[0];
BinaryTreeNode* root = new BinaryTreeNode();
root->m_nValue = rootValue;
root->m_pLeft = root->m_pRight = nullptr;
if(startPreorder == endPreorder)
{
if(startInorder == endInorder && *startPreorder == *startInorder)
return root;
else
throw std::exception("Invalid input.");
}
// 在中序遍历中找到根结点的值
int* rootInorder = startInorder;
while(rootInorder <= endInorder && *rootInorder != rootValue)
++ rootInorder;
if(rootInorder == endInorder && *rootInorder != rootValue)
throw std::exception("Invalid input.");
int leftLength = rootInorder - startInorder;
int* leftPreorderEnd = startPreorder + leftLength;
if(leftLength > 0)
{
// 构建左子树
root->m_pLeft = ConstructCore(startPreorder + 1, leftPreorderEnd,
startInorder, rootInorder - 1);
}
if(leftLength < endPreorder - startPreorder)
{
// 构建右子树
root->m_pRight = ConstructCore(leftPreorderEnd + 1, endPreorder,
rootInorder + 1, endInorder);
}
return root;
}